How does fracking work Mia Nacamulli

Deep underground lies stores of once
inaccessible natural gas.

This gas was likely formed
over millions of years

as layers of decaying organisms
were exposed to intense heat and pressure

under the Earth’s crust.

There’s a technology called
hydraulic fracturing,

or fracking,

that can extract this natural gas,

potentially powering us
for decades to come.

So how does fracking work,

and why it is a source
of such heated controversy?

A fracking site can be anywhere
with natural gas,

from a remote desert

to several hundred feet
from your backyard.

It starts out with a long vertical hole
known as a wellbore

drilled down through layers of sediment.

When the well reaches 2500 - 3000 meters,
it’s at its kickoff point

where it can begin the process
of horizontal drilling.

It turns 90 degrees and extends
horizontally for about 1.5 kilometers

through a compressed black layer
called the shale rock formation.

A specialized perforating gun
is then lowered and fired,

creating a series of small,
inch-long holes

that burst through the well’s casing
into the rock layer.

About three to four months
after the initial drilling,

the well is ready for fracking to begin.

Fracking fluid is pumped down
into the well at a pressure so high,

it cracks the shale rock,

creating fractures through which
the trapped gas and oil can escape.

The fluid itself is more than 90% water.

The rest is made up of concentrated
chemical additives.

These vary depending on the specific
characteristics of the fracking site,

but usually fall into three categories:

acids for clearing debris
and dissolving minerals,

friction-reducing compounds to create

a slippery form of water
known as slickwater,

and disinfectant to prevent
bacteria growth.

Sand or clay is also mixed into
the water to prop open the fissures

so the gas and oil can keep leaking out,
even after the pressure is released.

It’s estimated that all of fracking’s
intense pumping and flushing

uses an average of 3-6 million gallons
of water per well.

That’s actually not a lot compared
to agriculture,

power plants,

or even golf course maintenance,

but it can have a notable impact
on local water supply.

And disposing of used fracking water
is also an issue.

Along with the trapped gas
that’s pumped up to the surface,

millions of gallons of flow-back liquid
come gushing up.

This liquid containing contaminants
like radioactive material,

salts,

heavy metals,

and hydrocarbons,

needs to be stored and disposed of.

That’s usually done in pits on-site
in deep wells

or off-site at water treatment facilities.

Another option is to recycle
the flow-back liquid,

but the recycling process can actually
increase levels of contamination

since the water is more toxic
with each use.

Wells are typically encased
in steel and cement

to prevent contaminants from leaking
into groundwater.

But any negligence
or fracking-related accidents

can have devastating effects.

Fracturing directly
into underground water

hazardous underground
seepage and leakage,

and inadequate treatment and disposal
of highly-toxic waste water

can potentially contaminate
drinking water around a fracking site.

There’s also concern about
the threat of earthquakes

and damaged infrastructure

from pressure
and waste water injection.

Links between fracking
and increased seismic activity

leave unresolved questions
about long-term pressure imbalances

that might be happening
deep beneath our feet.

Fracking’s biggest controversy, though,
is happening above the ground.

The general consensus is that burning
natural gas is better for the environment

than burning coal

since the gas collected from fracking

emits only half
the carbon dioxide as coal

per unit of energy.

The pollution caused
by the fracking itself, though,

isn’t negligible.

Methane that leaks out during the drilling
and pumping process

is many times more potent
than carbon dioxide

as a greenhouse gas.

Some scientists argue that methane
eventually dissipates,

so has a relatively low long-term impact.

But a greater question hangs in the air.

Does fracking take time,
money, and research

away from the development
of cleaner renewable energy sources?

Natural gas is non-renewable,

and the short-run economic interests
supporting fracking

may fall short in the face
of global climate change.

Experts are still examining
fracking’s overarching effects.

Although modern fracking has been
around since the 1940s,

it’s boomed in the last few decades.

As other sources of natural gas decrease,
the costs of non-renewable energies rise,

and cutting-edge technologies
make it so accessible.

But many countries and regions
have already banned fracking

in response to environmental concerns.

It’s undeniable that fracking has reshaped
the energy landscape around the world,

but for what long-term benefit
and at what cost?

地下深处储存着曾经
无法获得的天然气。

这种气体可能是
在数百万年的时间里形成的,

因为腐烂的生物层
暴露在地壳下的高温和高压

下。

有一种称为
水力压裂或水力压裂技术

的技术可以提取这种天然气,有

可能
在未来几十年为我们提供动力。

那么水力压裂是如何工作的

,为什么它会
引起如此激烈的争议呢?

水力压裂站点可以在任何
有天然气的地方,

从偏远的沙漠


距您后院数百英尺的地方。

它从一个长的垂直孔开始,该孔
被称为

通过沉积层向下钻出的井筒。

当井深达到 2500 - 3000 米时,
它就处于启动点

,可以开始
水平钻井过程。

它旋转 90 度并
水平延伸约 1.5 公里,

穿过称为页岩岩层的压缩黑色层
。 然后,

一个专门的射孔枪
被放下并发射,

形成一系列小的、
英寸长的孔

,这些孔穿过井的套管
进入岩层。

在初次钻井后大约三到四个月,

该井就可以开始进行水力压裂了。

压裂液
在如此高的压力下被泵入井中,

使页岩

破裂,形成裂缝
,被困的天然气和石油可以通过裂缝逸出。

流体本身是超过 90% 的水。

其余部分由浓缩的
化学添加剂组成。

这些因水力压裂现场的具体特征而异

但通常分为三类:

用于清除碎屑
和溶解矿物质的酸、

用于

产生被称为滑溜水的滑水形式的减少摩擦的化合物

以及用于防止
细菌生长的消毒剂。

沙子或粘土也
混入水中以支撑裂缝打开

,因此即使在压力释放后,天然气和石油也可以继续泄漏

据估计,水力压裂的所有
强烈抽水和冲洗

平均每口井使用 3-6 百万加仑
的水。

与农业、

发电厂

甚至高尔夫球场维护相比,这实际上并不算多,

但它会对当地的供水产生显着影响

处理用过的压裂水
也是一个问题。

随着被
泵送到地面的被困气体,

数百万加仑的回流
液体涌出。

这种含有
放射性物质、

盐、

重金属

和碳氢化合物等污染物的液体

需要储存和处理。

这通常在深井的现场坑中

或水处理设施的场外进行。

另一种选择是
回收回流液体,

但回收过程实际上会
增加污染水平,

因为每次使用的水毒性更大

水井通常
用钢和水泥包裹,

以防止污染物泄漏
到地下水中。

但任何疏忽
或与水力压裂相关的事故

都可能产生破坏性影响。

直接压裂
进入地下水会造成

危险的地下
渗漏和泄漏,

以及对剧毒废水的不充分处理和处置

可能会污染
水力压裂现场周围的饮用水。

人们还担心
地震的威胁

以及压力和废水注入造成的基础设施受损

水力压裂
与地震活动增加之间的联系

留下了关于长期压力失衡的未解决问题,这些问题

可能发生
在我们脚下的深处。

然而,水力压裂法最大的
争议发生在地面上。

普遍的共识是,燃烧
天然气比燃烧煤炭对环境更好,

因为从压裂收集的气体每单位能源

排放的二氧化碳仅是煤炭的一半

然而,水力压裂本身造成的污染

不容忽视。

在钻井和抽水过程中泄漏的甲烷

作为温室气体的效力比二氧化碳强很多倍。

一些科学家认为,甲烷
最终会消散,

因此长期影响相对较低。

但一个更大的问题悬而未决。

水力压裂是否需要时间、
金钱和

研究来
开发更清洁的可再生能源?

天然气是不可再生的,面对全球气候变化,

支持水力压裂的

短期经济利益可能不足

专家们仍在研究
水力压裂的总体影响。

尽管现代水力压裂法
自 1940 年代就已存在,

但在过去几十年中蓬勃发展。

随着其他天然气来源的减少,
不可再生能源的成本上升,

而尖端技术
使其变得如此容易获得。

但许多国家和地区
已经禁止水力压裂

以应对环境问题。

不可否认,水力压裂技术已经重塑
了世界各地的能源格局,

但它的长期利益
和代价是什么?