Flock logic How groups move in nature by design and on stage

[Music]

so

hello my name is naomi eric leonard i am

professor of mechanical engineering at

princeton university in the u.s

and today i’m going to share with you

some of what i know about

flock logic how groups move in nature

by design and on stage with a focus on

my contribution to the making of a dance

piece

called there might be others the piece

is what’s referred to

as a structured improvisation

performance instructions and rules are

choreographed but it’s the dancers who

make compositional choices

in the moment as the dance unfolds on

stage

the project intrigued me because of my

interest and work more broadly

on the logic that explains how groups

move there might be others offered

a unique opportunity to explore that

logic

with highly trained artists who make

movement choices

with respect to constraints that we

could introduce and manipulate

by design in my research i

investigate and apply the logic of group

motion

to explain the remarkable movement of

groups in biology

and to enable similarly remarkable

movement of groups

in engineering but because groups in

biology engineering and the arts

seem maybe quite unrelated my

first goal today is to convince you that

there is a

common logic behind how these different

kinds

of groups move to do so i’m going to

talk specifically about

the logic behind the collective motion

of birds

of robots and of the dancers and there

might be others

so my second goal is to convince you

that mathematics

provides an elegant language for

abstracting out this logic

allowing us to unify our understanding

of the underlying principles of

collective motion across these seemingly

unrelated groups and providing an

opportunity to draw

inspiration from one type of group and

use it to inform how we think about

another

and this was decidedly the case in the

making of there might be others

so by logic i mean a set of rules

that govern how individuals in a group

respond to what they sense about their

neighbors

and their environment and how it is that

these responses lead to

the richly coordinated movement of the

group as a whole

so to appreciate the possibility of

there being a common logic consider

that the beautiful shifting pattern

of a flock of birds emerges from the

evolved responses of individual birds to

what they

observe of their neighbors and their

environment

and the beautiful shifting motion

patterns of a team of robots

emerges from the designed responses of

individual robots to what they

observe of their neighbors and

environment and the beautifully shifting

motion pattern of a group of dancers

emerges both from

choreographed and from artistic

responses of individual dancers to their

neighbors

and environment and this is particularly

striking in a rule-based piece like

there might be others and so so watch

this clip

from the new york city premiere of there

might be others in march 2016 and you’ll

see

these shifting patterns among the

dancers in time and in space and as you

watch consider what

rules and responses might be governing

those patterns

[Music]

[Music]

and there might be others the dancers on

the fly compositional

choices involve jointly negotiating a

catalog

of defined movement modules with a set

of rules

the catalog concludes 44 modules each of

which corresponds to a composed

set of rules or a gestural idea

or a task some modules are boisterous

like

jump bean where the instruction is to

bounce and interact with fellow dancers

and other modules are

more meditative such as ore where the

body gently shifts forward

and backwards the performers are

instructed

to dance their way through most if not

all of the 44 modules

choosing in the moment the sequencing of

modules as well as how to introduce

juxtapose vary and abandon modules

in support of the aesthetic of the work

the rules which impose constraints on

the dancers choices

are designed explicitly to encourage the

dancers to experiment

with timing with spacing with

relationships

even with unpredictability and the

result is that the dancers through their

collective in the moment decisions

create and invent ever new beautiful and

complex

patterns and create moments of human

connection

so my contribution to the making of

there might be others was to

introduce new ways to experiment with

composition

using the logic of how groups move in

nature and by

design and so the first step in

understanding the logic is to recognize

that for birds

robots and dancers the choices that

individuals make

don’t just lead to beautiful patterns

they also allow groups

to manage the challenges of an uncertain

and changing environment

especially challenges that individuals

can’t manage on their own

and this is possible only if individuals

regularly and

frequently observe their motion of the

neighbor of their neighbors

and adjust their own motion in response

to what they observe

so the logic of group motion therefore

is built on a rule that describes how

individuals continually respond to what

they observe about the motion of their

neighbors

and furthermore to allow for the

richness of group motion

the rules should include dials such that

the turn of a dial

tunes the quality of the group motion

for example a dial might

refer to how many neighbors an

individual observes

and turning up the style which means

increasing the number of neighbors

improves the cohesiveness of the group

as it moves

so to motivate take a look at this

spectacular

display of starlings specifically notice

how sensitive

the group is to the motion of the

predator

and at the same time how cohesive the

group is despite the uncertainty

and presumably disturbances in the air

furthermore notice that this happens

and it’s all the more remarkable given

that the individual starlings have

limited attention what looks so

effortless is actually an amazing

balancing act

the individual birds use some of their

attention

to observe neighbors for coherence but

reserve

the rest of their attention to look out

for

predators this is the well-known

explorer versus exploit

tension which is ubiquitous in nature

and

design to exploit means to focus on the

well-known and to explore means to

check out the unknown but the two are

intentioned when resources like

attention

are limited so the second step in

understanding the logic of a group

in motion is to use the language of

mathematics to encode the rules

the dials and the explorer exploit

tension

the result are mathematic mathematical

equations that provide

a unified framework for investigating

the relationships between

rules individual responses and the

emergent group

behavior importantly we can use the

mathematics

to examine how turning dials tunes

features

of group motion so i’m going to

illustrate briefly

by describing application to the logic

of the in a study

of a flock of birds and in the design

of a team of robots and then i’m going

to show you how the results inspired

our novel approach to compositional

experimentation

in there might be others so birds will

flock

if every bird follows a rule to

regularly observe the direction of

motion of its neighbors and turn in the

average direction of these neighbors

so picture a single bird that makes a

sharp turn by the rule

any bird that observes this this uh the

bird that turned

will turn with it and then anybody whose

neighbors those birds

are among those birds who’ve turned will

turn with them and so on until the whole

group turns

cohesively the cohesion gets better when

each bird pays attention to more

neighbors

but this is in tension with exploring

for predators

which requires paying attention to fewer

neighbors so we let the number of

neighbors

be a dial the scientists who

filmed and studied the starlings in the

video showed that every bird pays

attention to its

seven closest neighbors but it was not

clear why the number seven

with my research group we hypothesized

that

seven might be the dial setting that

best balances the explore

exploit tension so using the mathematics

we derived a score

that quantifies how well a group

balances

the tension given a snapshot of the

birds and given a dial setting

so then using over 400 snapshots and a

dozen dial settings we found

that the score was greatest when each

bird pays attention to its six or seven

closest neighbors which matches the

number found by the scientists

and provides evidence in support of our

hypothesis with my students and

collaborators we use the same kind of

logic to design

strategies for a group of ocean-going

robots called underwater gliders

these were equipped with sensors to

measure ocean temperatures

salinity and currents and the goal was

to enable the robots to coordinate into

motion patterns that were mel well

matched to the

spatial and temporal dynamics in the

ocean so that the collected data the

collected measurements would best reveal

the ocean physics in monterey bay

california

however underwater gliders are limited

in how fast they can go especially

relative to

stiff currents and this creates an

explore exploit tension

a robot either moves to where currents

are known to be manageable

or it explores where currents have not

been well measured

so for each robot the rule was to

regularly observe

the direction of motion of its neighbors

but this time to move in the opposite

direction so as to allow the group to

spread out

over coordinated patterns on rectangular

tracks and

the dials in the rules govern which

robots were paying attention and

responding to which other

robots on which tracks and so with the

mathematics we showed how these dials

would tune the group motion pattern to

manage the changing environment given

the explore exploit tension so in august

of 2006 we programmed a group of six

robotic gliders with these rules and the

robots used them to move in and around

monterey bay for 24 days straight nearly

and here’s an animation of the

experimental results you’re looking

overhead

at the six robots each represented by a

color circle

the gray lines governed by the dials

show which

robots are responding to which other

robots and you can see how changing the

dials

tuned the motion patterns and despite

the fact that the gliders got pushed

around by the currents our design led to

an unprecedented

data set that has advanced understanding

of the coastal ocean

now an important lesson we learned from

our work with birds and robots

was that rules derived for agents faced

with an explorer exploit tension

provide a wide range of tunable

collective motion patterns

and so we sought out a constraint that

we could

impose on the dancers

by way of the performance rules and

there might be others to create and

explore

exploit tension and with it rich

compositional opportunities

and through experiments and rehearsal

and analysis

of the mathematical equations that

encode the rules we found a useful

constraint in imposing a strict limit on

the number

of modules that could be active could be

danced at the same time during the dance

piece

and there might be others a dancer

exploits when experimenting with an

existing module

and explores by introducing a new module

these are both creative choices but

their intention

if there’s a strict limit on how many

modules can be active at the same time

for example if the limit is three then

either the dancers

experiment with the three active modules

or

they complete one of the modules so that

they can introduce a new one

the limiting number of modules is a dial

and we turn the dial down to two to

heighten the tension

a two module limit means that a dancer

can only add

a new module if all of the dancers have

converged on a single module

so without any advanced discussion we

tried the two module limit

in rehearsal with the dancers and the

dancers did describe

feeling the tension and finding new

challenges and creative opportunities

we could also see this in the richly

varied

switching between exploring and

exploiting as well as

in provocative and playful playful new

moments that we saw them create for

example we saw

changes in who could influence the

pacing of a piece

any dancer could speed up the pace by

introducing a new module but now with

the limit any dancer could slow down the

piece

by taking their time to converge on a

single module

like the dancer on the floor is doing in

this photo

we also saw dancers invent ways to coax

others into a single module

like the dancers standing in a circle

are doing at that same moment

in one rehearsal a dancer gently folded

other dancers

from one of the two existing modules

into

another and then quickly introduced a

new module

and then a little while later another

dancer created a lovely

playful moment when she folded other

dancers without actually intending

to introduce a new module and so the

other dancers then in sequence

unfolded themselves we also use the

mathematical equations to find other

dials in the rules that could produce

and provide interesting tunability of

the qualities

of the collective motion patterns one

such dial

represented the dancer’s resistance to

switching between active modules

which when turned up slowed the pacing

of the piece

in rehearsal we used a drumbeat to

signal to the dancers

a dial up or down of this resistance to

switch

and we observed how we could effectively

this way tune the pacing of the piece

further more the dancers reported liking

these external cues like the drum beat

since it gave them a chance

to focus from inward looking to outward

looking with respect

to the group so there might be others

prospered from compositional

experimentation

informed by the logic of group motion

with the help of a mathematical

framework inspired by studies

of groups in biology and engineering and

my research

in biology and engineering has prospered

from

what we learned from working with highly

trained dancers about the logic of group

motion

i am grateful to choreographer rebecca

legere who led the collaboration

composer dan truman postdocs caihan

osinder and biswadup day

and an extraordinary group of dancers

and musicians

for exploiting their great talent and

taking a risk to

explore in the making of there might be

others

with that i thank you for your attention

and leave you to enjoy

one final clip from the performance

[Music]

so

[Music]

[Music]

[Music]

[Music]

you

[音乐]

你好,我的名字是 naomi eric leonard,我是

美国普林斯顿大学机械工程系的教授

,今天我将与大家分享

一些我对

群体逻辑的了解,群体如何

通过设计等方式在自然界中移动 舞台,重点是

我对制作舞蹈

作品的贡献

可能还有其他人 这件作品

所谓的结构化即兴

表演 表演说明和规则是

精心编排的,但随着舞蹈的展开,舞者

会在当下做出构图选择

舞台上

这个项目引起了我的兴趣,因为我的

兴趣和更广泛

地研究解释群体如何移动的逻辑

可能会有其他人提供

一个独特的机会来

与训练有素的艺术家一起探索这种逻辑,他们根据

我们可以引入的约束做出移动选择

在我的研究中通过设计操纵我

研究并应用群体运动的逻辑

来解释非凡的运动

生物学中的群体,

并使工程学中的群体发生同样显着的

运动,

但是因为

生物工程和艺术中的群体

似乎完全无关,我

今天的第一个目标是让你相信,

这些不同类型的群体如何移动到背后有一个共同的逻辑。

这样做我将

专门讨论

机器人和舞者的集体运动背后的逻辑,

可能还有其他的,

所以我的第二个目标是让你

相信数学

提供了一种优雅的语言来

抽象出这种逻辑,

从而使我们能够 统一我们对

这些看似

不相关的群体的集体运动的基本原则的理解,并提供一个

机会,

从一种群体中汲取灵感,并

用它来告知我们如何思考

另一个群体

,这显然是在

制作 there might 做其他人,

所以按逻辑我的意思是一组规则

,这些规则管理群体中的个人如何

回应他们所看到的 关于他们的

邻居

和他们的环境,以及

这些反应如何导致

整个群体的高度协调的运动,

因此要理解存在共同逻辑的可能性,请

考虑

一群鸟的美丽变化模式来自于

个体鸟类

对它们观察到的邻居和

环境的进化反应,

以及一组机器人美丽的移动运动

模式,

来自于

个体机器人

对它们观察到的邻居和

环境的设计反应,以及美丽的移动

运动模式 一群舞者的

形象出现在

编排和

个别舞者对他们的

邻居

和环境的艺术反应中,这

在一个基于规则的作品中尤其引人注目,就像

可能有其他人一样,所以请观看

纽约市首映的这段剪辑

2016 年 3 月可能还有其他人,你会

看到

这些变化的模式 s

在时间和空间中的舞者之间,当你

观看时,考虑哪些

规则和反应可能会控制

这些模式

[音乐]

[音乐]

并且可能还有其他舞者

在飞行中的构图

选择涉及共同协商

定义的运动模块的目录

该目录包含一组规则,其中包含 44 个模块,每个模块

对应于一

组组合规则或一个手势想法

或一项任务,一些模块

跳豆一样热闹,其中指令是

弹跳并与其他舞者互动

,其他模块

更多 冥想,例如

身体轻轻向前和向后移动的矿石,

指示表演者在 44 个模块中的大部分(如果不是

全部)中跳舞

在作品的美学方面

,对舞者的选择施加限制的规则

是明确设计的,以鼓励

即使在不可预测的情况下,舞者也可以尝试时间与空间的关系,

结果是舞者通过他们的

集体决定

创造和发明新的美丽和

复杂的

模式,并创造人类联系的时刻,

所以我对制作

那里的贡献可能 成为其他人是

引入新的方法来

使用群体如何在

自然界和

设计中移动的逻辑来尝试组合,因此

理解逻辑的第一步是认识

到对于鸟类

机器人和舞者来说,

个人

做出的选择不仅仅是 导致美丽的模式

它们还允许

团体管理不确定

和不断变化的环境的

挑战,特别是

个人无法独自管理的挑战

,这只有在个人

定期和

频繁地观察他们的

邻居邻居的动作

并调整时才有可能 他们自己的动作以

回应他们观察到的事情,

所以 lo 因此,群体运动的

gic 建立在一个规则之上,该规则描述了

个人如何不断地

对他们观察到的邻居的运动做出反应

,此外,为了允许

群体运动的丰富性,

规则应该包括刻度盘,

以便转动刻度盘来

调整 群体运动的质量,

例如,表盘可能

是指一个

人观察到

的邻居数量并调高样式,这意味着增加邻居的数量

可以提高群体在移动时的凝聚力,

从而激发观看这个

壮观的

展示 椋鸟特别注意到

该群体对捕食者的运动有多敏感

,同时

尽管存在不确定性

和可能的空气干扰,但该群体的凝聚力如何

进一步注意到这种情况

发生了,

鉴于个体椋鸟具有

有限的注意力 看起来如此

轻松实际上是一种惊人的

平衡

行为 双鸟使用他们的一些注意力

来观察邻居的连贯性,但

保留其余的注意力来寻找

捕食者这是众所周知的

探险家与利用

紧张关系,这种紧张关系在自然界中无处不在,

并且旨在利用手段来专注于

众所周知的 已知和探索意味着

检查未知,但两者都是

在注意力

等资源有限的情况下使用的,因此

了解运动中的群体逻辑的第二步

是使用数学语言

对表盘和探索者的规则进行编码 利用

张力结果是数学数学

方程,它提供

了一个统一的框架来研究

规则个体反应和

紧急群体

行为之间的关系重要的是我们可以使用

数学

来检查转动表盘如何调整

群体运动的特征,所以我将

简要说明

通过描述对

一群鸟和我的研究中的逻辑的应用 n

一组机器人的设计,然后我

将向您展示结果如何启发

了我们进行组合

实验

的新颖方法,因为可能还有其他方法,因此

如果每只鸟都遵循规则

定期观察

运动方向,鸟儿就会成群结队 它的邻居并

朝这些邻居的平均方向转

所以想象一只鸟

按照规则急转弯

任何观察到这一点的

鸟 呃 转身的鸟

会跟着它转,然后任何

与这些鸟相邻的人

都在这些鸟中 转向的人将与他们一起转向

,依此类推,直到整个

群体

团结一致,当每只鸟关注更多的邻居时,凝聚力会变得更好,

但这与探索捕食者的关系很紧张

,需要关注更少的

邻居,所以我们让数字 邻居

是一个表盘

拍摄和研究

视频中椋鸟的科学家表明,每只鸟都会

注意它的

七个最近的邻居 s 但

不清楚为什么

我的研究小组的数字 7 我们假设

7 可能是

最能平衡探索

利用张力的刻度盘设置,因此使用数学

我们得出一个分数

,量化一个小组

在给定快照的情况下平衡张力的程度

鸟类的数量并给出一个刻度盘

设置,然后使用 400 多个快照和

十几个刻度盘设置,我们发现

当每

只鸟注意其六或七个

最近的邻居时得分最高,这与

科学家发现的数字相匹配

并提供证据

与我的学生和合作者一起支持我们的假设

我们使用相同的

逻辑

为一组

称为水下滑翔机的远洋机器人设计策略,

这些机器人配备了传感器来

测量海洋温度、

盐度和洋流,目标

是使机器人能够 协调成

与海洋中的空间和时间动态非常匹配的运动模式,

因此 收集到的数据

收集到的测量结果将最好地揭示

加利福尼亚州蒙特雷湾的海洋物理学,

但是水下滑翔机

的速度有限,尤其是

相对于

僵硬的水流而言,这会产生

探索利用

张力,机器人要么移动到

已知水流的地方 是易于管理的,

或者它会探索没有很好地测量电流的地方,

因此对于每个机器人,规则是

定期观察

其邻居的运动方向,

但这次要朝相反的方向移动,

以便让小组

分散

在协调的模式上 在矩形

轨道上,

规则中的刻度盘控制着哪些

机器人正在关注和

响应哪些其他

机器人在哪些轨道上,因此

我们通过数学展示了这些刻度盘

如何调整群体运动模式以

管理在探索利用紧张的情况下不断变化的

环境 所以在

2006 年 8 月,我们用这些 ru 编写了一组六个

机器人滑翔机 les 和

机器人用它们在

蒙特雷湾及其周围连续移动了 24 天

,这是一个实验结果的动画,

你正在

头顶

看六个机器人,每个机器人都用一个色环表示,

由表盘控制的灰线

显示

机器人正在响应其他

机器人,您可以看到改变

刻度盘

是如何调整运动模式

的 我们从鸟类和机器人的工作中学到的重要教训

是,为面对探险者利用张力的代理推导出的规则

提供了广泛的可调

集体运动模式

,因此我们找到了一个

可以

通过以下方式强加给舞者的约束 表演规则,

可能还有其他人来创造和

探索

利用张力,以及丰富的

作曲机会

和 对编码规则的数学方程进行粗略的实验、排练

和分析

我们发现了一个有用的

约束条件,即严格限制

可以活动的模块的数量,可以

在舞曲中同时跳舞

,可能还有其他的 舞者

在尝试现有模块时利用

并通过引入新模块进行探索,

这些都是创造性的选择,但

如果对可以同时激活的模块数量有严格限制

,例如如果限制为三个,那么舞者的意图是

对三个活动模块进行实验,

或者

他们完成其中一个模块,以便

他们可以引入一个新

模块。模块的限制数量是一个表盘

,我们将表盘调低到两个以

增加张力。

两个模块的限制意味着舞者

可以 只有

当所有舞者都

集中在一个模块上时才添加一个新模块,

所以没有任何高级讨论,我们

尝试了两个模块的限制

在与舞者的排练中,

舞者确实描述了

感受到紧张并寻找新的

挑战和创造机会,

我们也可以在探索和利用之间的丰富

多样的

转换

以及

我们看到他们创造的挑衅和俏皮的新时刻中看到这一点

例如,我们

看到谁可以影响作品的

节奏发生了变化,

任何舞者都可以通过

引入一个新模块来加快节奏,但现在

由于限制,任何舞者都可以

通过花时间集中在一个

像舞者这样的模块上来减慢作品的速度 在

这张照片中,

我们还看到舞者发明了将其他舞者哄

进一个模块的方法,

就像站成一圈的舞者在排练的

同一时刻所做的那样,

舞者轻轻地将

其他舞者

从两个现有模块中的一个模块中折叠起来

进入

另一个,然后很快引入了一个

新模块

,过了一会儿,另一个

舞者创造了一个可爱的

俏皮时刻,她 折叠其他

舞者而实际上并不

打算引入新模块,因此

其他舞者然后依次

展开自己,我们还使用

数学方程式

在规则中找到其他刻度盘,这些刻度盘可以产生

并提供

集体运动模式质量的有趣可调性一个

这样的刻度盘

代表舞者对

在活动模块之间切换的阻力

,当它打开时会减慢

排练中作品的节奏,我们使用鼓声

向舞者发出信号,

向上或向下调节这种阻力以进行

切换

,我们观察了我们如何有效地做到

这一点 进一步调整乐曲的节奏

舞者报告说喜欢

这些外部提示,例如鼓声,

因为这让他们有机会

从内部观察到外部

观察群体的注意力,因此可能会有其他

人从作曲

实验中获得成功 在数学框架的帮助下群运动的逻辑

受到

生物学和工程学团体研究的启发,

在生物学和工程学方面的研究

从我们与训练有素的舞者合作中学到的

关于团体运动逻辑的

知识中取得了成功

osinder 和 biswadup 日,

以及一群非凡的舞者

和音乐家

,他们利用他们的才华,

冒险

探索制作可能还有

其他

人,我感谢您的关注

,让您欣赏

表演的最后一个片段

[音乐]

所以

[音乐]

[音乐]

[音乐]

[音乐]