Natures smallest factory The Calvin cycle Cathy Symington

You’re facing a giant bowl

of energy packed Carbon Crunchies.

One spoonful. Two. Three.

Soon, you’re powered up by the energy surge

that comes from your meal.

But how did that energy get into your bowl?

Energy exists in the form of sugars

made by the plant your cereal came from,

like wheat or corn.

As you can see, carbon is the chemical backbone,

and plants get their fix of it

in the form of carbon dioxide, CO2,

from the air that we all breath.

But how does a plant’s energy factory,

housed in the stroma of the chloroplast,

turn a one carbon gas, like CO2,

into a six carbon solid, like glucose?

If you’re thinking photosynthesis, you’re right.

But photosynthesis is divided into two steps.

The first, which stores energy from the sun

in the form of adenosine triphosphate, or ATP.

And the second, the Calvin cycle, that captures carbon

and turns it into sugar.

This second phase represents one of nature’s

most sustainable production lines.

And so with that, welcome to world’s most miniscule factory.

The starting materials?

A mix of CO2 molecules from the air,

and preassembled molecules called

ribulose biphosphate, or RuBP,

each containing five carbons.

The initiator? An industrious enzyme named rubisco

that welds one carbon atom from a CO2 molecule

with the RuBP chain

to build an initial six carbon sequence.

That rapidly splits into two shorter chains

containing three carbons each

and called phosphoglycerates, or PGAs, for short.

Enter ATP, and another chemical called

nicotinamide adenine dinucleotide phosphate,

or just NADPH.

ATP, working like a lubricant, delivers energy,

while NADPH affixes one hydrogen to each of the PGA chains,

changing them into molecules called

glyceraldehyde 3 phosphates, or G3Ps.

Glucose needs six carbons to form,

made from two molecules of G3P,

which incidentally have six carbons between them.

So, sugar has just been manufactured, right?

Not quite.

The Calvin cycle works like a sustainable production line,

meaning that those original RuBPs

that kicked things off at the start,

need to be recreated by reusing materials

within the cycle now.

But each RuBP needs five carbons

and manufacturing glucose takes a whole six.

Something doesn’t add up.

The answer lies in one phenomenal fact.

While we’ve been focusing on this single production line,

five others have been happening at the same time.

With six conveyor belts moving in unison,

there isn’t just one carbon that gets soldered

to one RuBP chain,

but six carbons soldered to six RuBPs.

That creates 12 G3P chains instead of just two,

meaning that all together, 36 carbons exist:

the precise number needed to manufacture sugar,

and rebuild those RuBPs.

Of the 12 G3Ps pooled together,

two are siphoned off to form

that energy rich six carbon glucose chain.

The one fueling you via your breakfast. Success!

But back on the manufacturing line,

the byproducts of this sugar production

are swiftly assembled to recreate those six RuBPs.

That requires 30 carbons,

the exact number contained by the remaining 10 G3PS.

Now a molecular mix and match occurs.

Two of the G3Ps are welded together

forming a six carbon sequence.

By adding a third G3P, a nine carbon chain is built.

The first RuBP, made up of five carbons,

is cast from this,

leaving four carbons behind.

But there’s no wastage here.

Those are soldered to a fourth G3P molecule,

making a seven carbon chain.

Added to a fifth G3P molecule,

a ten carbon chain is created,

enough now to craft two more RuBPs.

With three full RuBPs recreated

from five of the ten G3Ps,

simply duplicating this process

will renew the six RuBP chains

needed to restart the cycle again.

So the Calvin cycle generates the precise number

of elements and processes

required to keep this biochemical production line

turning endlessly.

And it’s just one of the 100s of cycles

present in nature.

Why so many?

Because if biological production processes were linear,

they wouldn’t be nearly as efficient or successful

at using energy to manufacture the materials

that nature relies upon, like sugar.

Cycles create vital feedback loops

that repeatedly reuse and rebuild ingredients

crafting as much as possible

out of the planet’s available resources.

Such as that sugar,

built using raw sunlight and carbon

converted in plant factories

to become the energy that powers you

and keeps the cycles revolving in your own life.

你正面临着一大碗

充满能量的碳脆饼。

一勺。 二。 三。

很快,你就会被你的饭菜带来的能量激增所激发

但是这种能量是如何进入你的碗的呢?

能量以

谷物所来自的植物(

如小麦或玉米)制成的糖的形式存在。

如您所见,碳是化学骨架

,植物

以二氧化碳的形式

从我们呼吸的空气中获取碳。

但是,

位于叶绿体基质

中的植物能源工厂如何将二氧化碳等单碳气体

转化为葡萄糖等六碳固体?

如果你在考虑光合作用,你是对的。

但是光合作用分为两个步骤。

第一个,它

以三磷酸腺苷或 ATP 的形式储存来自太阳的能量。

第二个是卡尔文循环,它捕获碳

并将其转化为糖。

第二阶段代表了自然界

最可持续的生产线之一。

就这样,欢迎来到世界上最小的工厂。

起始材料?

空气中的 CO2 分子

和称为

核酮糖二磷酸或 RuBP 的预组装分子的混合物,

每个分子都含有五个碳。

始作俑者? 一种名为 rubisco 的酶可以将

CO2 分子中的一个碳原子

与 RuBP 链焊接在一起,

从而构建出最初的六碳序列。

它迅速分裂成两条较短的链

,每条链含有三个碳

,简称磷酸甘油酯或 PGA。

输入 ATP 和另一种称为

烟酰胺腺嘌呤二核苷酸磷酸盐的化学物质,

或简称为 NADPH。

ATP 像润滑剂一样工作,提供能量,

而 NADPH 将一个氢附加到每个 PGA 链上,

将它们变成称为

甘油醛 3 磷酸盐或 G3P 的分子。

葡萄糖需要六个碳才能形成,

由两个 G3P 分子组成,

它们之间顺便有六个碳。

所以,糖才刚刚生产出来,对吧?

不完全的。

卡尔文循环就像一条可持续生产线,

这意味着

那些一开始就启动的原始 RuBPs 现在

需要通过在循环中重复使用材料来重新创建

但是每个 RuBP 需要五个碳,

而制造葡萄糖则需要六个。

有些东西没有加起来。

答案在于一个惊人的事实。

虽然我们一直专注于这条单一的生产线,但

其他五条生产线也在同时进行。

六个传送带同步移动,

不仅有一个碳被焊接

到一个 RuBP 链上,

而且六个碳被焊接到六个 RuBP 上。

这就产生了 12 个 G3P 链,而不仅仅是两个,

这意味着总共存在 36 个碳:

制造糖

和重建这些 RuBP 所需的精确数量。

在汇集在一起的 12 个 G3P 中,

两个被虹吸掉以

形成富含能量的六碳葡萄糖链。

通过早餐为您加油的那个。 成功!

但回到生产线上,

这种糖生产的副产品

被迅速组装以重新制造这六种 RuBP。

这需要 30 个碳,

即剩余 10 个 G3PS 所包含的确切数量。

现在发生了分子混合和匹配。

其中两个 G3P 焊接在一起

形成六碳序列。

通过添加第三个 G3P,构建了一条九碳链。

第一个由五个碳组成的 RuBP

是由此铸造的,

留下四个碳。

但这里没有浪费。

这些被焊接到第四个 G3P 分子上,

形成一个七碳链。

添加到第五个 G3P 分子中,

形成了一个十碳链,

现在足以再制造两个 RuBP。

从十个 G3P 中的五个重新创建三个完整的 RuBP,

只需复制此过程即可

更新

重新启动循环所需的六个 RuBP 链。

因此,卡尔文循环产生

了保持这条生化生产线

无休止运转所需的精确数量的元素和过程。

它只是

自然界中存在的 100 个周期之一。

为什么这么多?

因为如果生物生产过程是线性的,

那么它们

在使用能源来制造

自然所依赖的材料(如糖)方面就不会那么有效或成功。

循环创造了重要的反馈循环

,重复使用和重建

尽可能多

地利用地球可用资源制作的成分。

例如糖,

利用

植物工厂中的原始阳光和碳转化

为能量,为您提供动力

并保持您自己生活中的循环。