Ryan Phelan The intended consequences of helping nature thrive TED

Meet Elizabeth Ann.

She’s a black-footed ferret,

America’s most endangered animal.

She was cloned using cells
from a ferret that lived 33 years ago.

Elizabeth Ann is a new hope
for the future of her species,

a chance to actually restore
lost genetic diversity.

She was born for this
intended consequence.

I’ve been working in conservation
for the last 10 years

with innovative scientists
from around the world

to bring biotechnology
to wildlife conservation.

We need to solve the escalating threats
to biodiversity from climate change,

habitat loss, fragmented populations
and wildlife diseases.

These are the unintended consequences
of the human-dominated time we live in.

A time when we need new tools
for the conservation toolbox

and with genetic rescue,

we can actually help stop more species
from crossing the line into extinction.

And the black-footed ferret
is a great example.

The black footed-ferret
historically ranged

all across the Great Plains
of North America,

from Canada to Mexico.

That is, until their habitat was converted
to ranches and farmland.

By 1981, there was only one colony
of ferrets living in Wyoming.

They were brought into captivity,

and the US Fish and Wildlife Service
has successfully been breeding

and releasing these individuals back
into the wild for the last 30 years.

But all 600 living ferrets today

are the descendants
of just seven ancestors.

And with inbreeding that jeopardizes
their long-term survival in the wild.

To solve this challenge
of a lack of genetic variation,

we reached back in time.

Luckily, scientists had the foresight.

Starting in 1975, Dr. Oliver Ryder
and his team at the San Diego Zoo

started banking endangered species,

and it was with one of these cell lines

that we were able to actually
bring in a new individual

who lived 33 years ago,
who had unique genetic variation.

Elizabeth Ann is a result of that cloning.

She has three times more genetic variation
than any living ferret today.

And when she breeds
in the next couple of years,

her offspring will help create
greater resilience for her species.

Now Elizabeth Ann isn’t the only time
that we’ve done cloning.

We’ve worked with the Przewalski’s horses.

These are the only true species
of wild horse remaining in the world.

Historically, they were native
to Central Asia,

but they roamed all the way
from the Pacific

to the Atlantic Ocean for centuries.

Until they were basically
extinct in the wild,

with only several horses
left in captivity.

Conservationists have reintroduced
some of those horses since 1960,

back into the wild.

But all 2,000 horses all living today

are again at risk of inbreeding.

And many scientists
refer to this challenge

as the extinction vortex,

when small, fragmented populations
lose genetic variation

and become at risk
for the vortex of extinction

as their populations dwindle.

Now, with genetic rescue,
we can reverse this extinction vortex

by bringing a new genetic variation

and increasing the long-term survival
of these populations.

And that’s exactly what we did
with this Przewalski’s foal

named Kurt.

That’s actually his surrogate
mother to the right.

She’s an American Quarter Horse,
a different species.

But Kurt’s genome is all wild horse.

Now, here’s Kurt, exactly one year later,

this August.

He’s a wild, healthy,

vibrant Przewalski’s horse.

Now, these genetic rescue stories
could not have happened

without the collaboration
of multiple partners

and the tools of biotechnology.

Fundamental to all of this is the most
essential tool, is genomic sequencing

and the power of bringing
that information into the light

to help the management of these species.

In addition, the bio banking,

the cell culturing
and the in vitro technologies

have made this kind
of genetic rescue possible.

But even these technologies
are not widely adopted by conservation.

We hope to change that.

Emerging technologies
of genetic engineering

hold the promise of helping species
adapt to climate change,

solve wildlife disease problems,

and even help solve
invasive species problems.

But very often these technologies
never get out of the starting gate

because the fear of unintended
consequences absolutely stymies

even the most basic
innovation at the get-go.

Probably there’s no more urgent need

to overcome some of this reluctance
to use these technologies

than in the case of coral.

Coral, as many of you know,

are the most diverse and rich
ecosystems in the world.

They provide a rich biodiversity

for reef-dwelling fish and all ocean life.

And yet, sadly,

50 percent of the Great Barrier Reef
has been lost already to climate change

and environmental degradation.

Estimates predicts that by 2050,

we could lose as much as 90 percent
of the coral in the world.

There is hope.

Scientists around the world
are utilizing new technologies

to cryopreserve
even living coral fragments

that can be transplanted
onto artificial reefs.

This is just the beginning
of some of the work that is pioneering

and can happen.

I’m most excited about the use
of the new technologies

for developing stem cells.

Now these stem cells could be used

to actually genome edit in
thermal resilience to warming oceans.

Now, you may be
looking at that and saying,

“Genetically modified corals?

What about the unintended consequences?”

This question comes up so often
with any innovation in science,

we decided to actually identify
just how often, when humans intervene,

did they cause the disasters
that people fear so much.

And yes, your classic stories
of humans intervening in nature

and causing disasters,
like bringing rodents to islands,

that stowed away
on colonial sailing ships.

These invasive species and others
have caused greater than 60 percent

of the extinctions worldwide
since the early 1500s.

And then there’s the poster child
for intentionally releasing

the poisonous cane toad to Australia.

Back in 1935,

the sugar cane industry brought
this invasive, poisonous cane toad in

to solve their problem
with beetles in their crops.

It didn’t do much for the beetles,
and instead, since 1935,

it has continued to work
its way across Australia,

leaving nothing in its wake

and killing native species
all along the way.

These disasters stoke the minds of people
about fear of intervention,

and yet they happened in an era
when there was little regard

for the overall environmental ecosystem.

And they were done, in some cases,

even with profit motivation in mind,

they weren’t done
for conservation benefit.

And sadly, we never hear
about the success stories.

So when we looked at the research

about what happens when conservation
intend to intervene in nature,

we found a very different story.

All across the globe, for over a century,

scientists have been introducing
and reintroducing plants and animals

with no environmental harm.

You may know the classic success story
of introducing wolves to Yellowstone.

But that’s not the only one.

Think about this.

Over 1,000 species have been introduced
all across North America

for the last 125 years.

There has been no documented case,

except one,

of any intervention
causing a local extinction.

That was a native freshwater fish
from a small spring in Alabama.

Ninety-nine percent of these
interventions have succeeded

in achieving their intended consequence.

So you may look at this and wonder,
if intervention is so common in nature,

why aren’t we more aware of this?

And I think it’s because sometimes
success is actually invisible to us.

Take, for example, this image
of the Great Smoky Mountains,

America’s most visited national park.

What we see as pristine wilderness
is actually a very managed environment.

Those elk you see,

they’re the result
of being absent for 200 years

and being reintroduced.

That meadow is a result
of repeated controlled burns.

And non-native insects have been used
to control pathogens and invasive pests.

And there’s one more iconic species
that could come back to this forest.

That’s the American chestnut tree.

Historically, this majestic tree

rained down sweet nuts and fed humans
and animals alike for centuries.

For thousands of years,

it was the most abundant tree species

across the eastern deciduous forest.

It’s lumber was used to create
fine musical instruments

and hardwood furniture.

And until 1800,

there were four billion
of these trees across the forest

until blight, a fungal blight
that came in, imported,

invasive species,

absolutely wiped out these trees.

By 1950, all four billion
trees were decimated.

Now, since that time,

scientists have tried for decades

to figure out how to create
a blight-resistant chestnut tree.

And it’s happened.

Scientists at the State University
of New York have identified a way

inserting a single gene from wheat
that will convey blight resistance.

These genetically modified trees right now
are the first chance in 100 years

to restore these majestic
trees to the forest.

The US Department of Agriculture
right now is reviewing these trees

for release into the wild.

These are all bold initiatives.

Engineering coral to withstand
warming waters,

restoring the American chestnut tree,

the genetic rescue
of the black-footed ferret.

All of these initiatives will require
public engagement and public support.

I think it matters how people
think about intervention.

I believe we need to bring more balance
to how we think about risk.

There will always be unexpected outcomes

to any innovation in science,

but we have the tools and technology today
and the protocols to minimize risks

and maximize benefits.

So the next time you hear
about some bold new idea,

I hope you’ll think first
about the intended consequences.

We don’t have the luxury of time

to stand by and wait and see what happens

for the thousands of plants
and animals at risk today.

We know that doing nothing
can cause extinction.

Instead, let’s carefully
and intentionally plan

with all the tools in the toolbox

to achieve and create the future we want

and not overreact
to a future that we fear.

Thank you.

(Applause)

Chris Anderson: Please stay.

I think this is so interesting.

It seems to me, at the heart
of what you’re wrestling with each time

is this, you know, it’s a moral question.

So most moral philosophers, I think,
would say that fundamentally,

there’s not a difference
between intentional action

and intentional inaction
that leads to the same thing.

So why is it that in so many
areas of public policy

and certainly in the
environmental movement,

there is this huge distinction that people
make between action and inaction?

They would rather not act
and see something go wrong

than take the risk of acting.

Why?

Ryan Phelan: You know, I think
it’s public pressure that they feel

as scientists innovating.

They don’t want to get it wrong.

They have funders that challenged them
on taking on innovation and action.

They run the risk of losing jobs,
funding, security, public shame.

It’s so much easier for people
to stand by and do nothing

and not take ownership of it.

And I think this is really
what we’re trying to say,

is if we can encourage scientists
and innovators to be bold,

it will behoove all of us.

CA: Right.

So one advantage of inaction is just
that you’re less likely to be blamed.

RP: Exactly.

You don’t get credit either.

CA: No.

Ryan, these same technologies,
synthetic biology and so forth,

like in principle, they allow
actual de-extinction,

species that the planet
hasn’t seen for years,

in principle, we could bring back.

Are there any projects
you’re involved with

that excite you or possibly terrify you,

where we could see
such de-extinction taking place?

RP: Well, technically the American
chestnut tree is almost extinct.

You know, people will see
some sprouts come up

because the roots are there,

but they basically, you know,

fail within 15 years.

So they’re not totally extinct,

but they’re very close to it.

You know, we are working on everything
from the woolly mammoth,

as some of you may know,
to the passenger pigeon.

But to me, the most motivating part
of these technologies is,

de-extinction is just a big,
hairy, audacious goal.

And if we get there, it’ll be grand.

But getting there, all of these
genetic rescue tools and technology

can be applied to save endangered species.

It’s all a fundamental tool kit.

It’s essential.

CA: Well, Ryan, you’re an extremely
compelling and persuasive

and trustworthy voice, I would say.

So thank you so much
for the work you’re doing

and for sharing this.

(Applause)

认识伊丽莎白安。

她是一只黑脚雪貂,是

美国最濒危的动物。

她是用
33 年前生活的雪貂的细胞克隆出来的。

伊丽莎白安是
她物种未来的新希望,是

一个真正恢复
失去的遗传多样性的机会。

她为这个
预期的结果而生。

在过去的 10 年里

,我一直在与
来自世界各地

的创新科学家一起从事保护工作,将生物技术
应用于野生动物保护。

我们需要解决
气候变化、

栖息地丧失、人口分散
和野生动物疾病对生物多样性不断升级的威胁。

这些是
我们生活的人类主导时代的意想不到的后果

。当我们需要新
的保护工具箱

和基因拯救工具的时候,

我们实际上可以帮助阻止更多的
物种越界灭绝。

黑脚雪貂
就是一个很好的例子。

黑脚雪貂
历史上

遍布
北美大平原,

从加拿大到墨西哥。

也就是说,直到它们的栖息地
变成牧场和农田。

到 1981 年,怀俄明州只有一个
雪貂群。

它们被圈养

,美国鱼类和野生动物管理局在过去 30 年
里成功地繁殖

并将这些个体
放归野外。

但今天所有 600 只活着的雪貂

都是七个祖先的后代。

近亲繁殖会危及
它们在野外的长期生存。

为了解决
缺乏遗传变异的挑战,

我们及时回溯。

幸运的是,科学家们有远见。

从 1975 年开始,Oliver Ryder 博士
和他在圣地亚哥动物园的团队

开始储存濒危物种

,正是通过其中一种细胞系

,我们才能真正
引进一个

生活在 33 年前的新个体,
他拥有独特的 遗传变异。

伊丽莎白安是克隆的结果。

她的遗传变异
是当今任何活的雪貂的三倍。

当她
在接下来的几年里繁殖时,

她的后代将有助于
为她的物种创造更大的恢复力。

现在,伊丽莎白安并不是我们唯一一次
进行克隆。

我们与普氏原羚的马一起工作。

这些是世界上唯一真正
的野马物种。

从历史上看,它们原产
于中亚,

但它们
从太平洋

一直漫游到大西洋几个世纪。

直到它们
在野外基本灭绝

,只剩下几匹马
被圈养。

自 1960 年以来,环保主义者将其中一些马

重新引入野外。

但是今天生活的所有 2,000 匹马

再次面临近亲繁殖的风险。

许多科学家
将这一挑战

称为灭绝漩涡,

即小而分散的种群
失去遗传变异

随着种群数量的减少而面临灭绝漩涡的风险。

现在,通过基因拯救,
我们可以

通过带来新的基因变异

并增加
这些种群的长期生存率来扭转这种灭绝漩涡。

这正是我们
对这只名叫库尔特的普氏野马驹所做的

这实际上是他
右边的代母。

她是一匹美国夸特马,
一个不同的物种。

但库尔特的基因组全是野马。

现在,库尔特来了,正好一年后,

今年八月。

他是一匹狂野、健康、

充满活力的普氏野马。

现在,
如果没有

多个合作伙伴的合作

和生物技术工具,这些基因拯救故事是不可能发生的。

所有这一切的基础是最
重要的工具,即基因组测序

以及将
这些信息带入光明

以帮助管理这些物种的能力。

此外,生物银行

、细胞培养
和体外

技术使
这种基因拯救成为可能。

但即使是这些技术
也没有被保护广泛采用。

我们希望改变这一点。

新兴
的基因工程技术

有望帮助物种
适应气候变化,

解决野生动物疾病问题,

甚至帮助解决
入侵物种问题。

但很多时候,这些技术
永远不会走出起点,

因为对意外后果的恐惧
绝对会阻碍

即使是最基础的
创新。

可能没有比珊瑚更迫切

需要克服这种
不愿使用这些

技术的情况了。

众所周知,珊瑚

是世界上最多样化和最丰富的
生态系统。

它们

为珊瑚礁鱼类和所有海洋生物提供了丰富的生物多样性。

然而,可悲的是,

50% 的大堡礁
已经因气候变化

和环境退化而消失。

据估计,到 2050 年,

我们可能会失去世界上多达 90%
的珊瑚。

还有希望。

世界各地的科学家
正在利用新技术

来冷冻保存
甚至

可以移植
到人工珊瑚礁上的活珊瑚碎片。

这只是一些具有开创性

和可能发生的工作的开始。

我对
使用新

技术开发干细胞感到最兴奋。

现在,这些干细胞可

用于实际进行基因组编辑,以
抵御变暖的海洋。

现在,您可能会
看着那个并说,

“转基因珊瑚

?意外的后果呢?”

这个问题经常
出现在科学的任何创新中,

我们决定真正确定
当人类干预时,他们多久会

造成人们如此恐惧的灾难。

是的,您
关于人类干预自然

并造成灾难的经典故事,
例如将啮齿动物带到岛屿上,

这些灾难藏
在殖民帆船上。 自 1500 年代初以来,

这些入侵物种和其他物种
已导致全球 60%

以上的物种灭绝

然后
是故意

将有毒的甘蔗蟾蜍释放到澳大利亚的典型代表。

早在 1935 年

,甘蔗业就引入了
这种侵入性、有毒的甘蔗蟾蜍,

以解决
他们作物中甲虫的问题。

它对甲虫没有多大作用
,相反,自 1935 年以来,

它继续
在澳大利亚各地工作,

没有留下任何痕迹,

并一路杀死本地物种

这些灾难激起了人们
对干预的恐惧

,但它们发生在一个

对整体环境生态系统漠不关心的时代。

在某些情况下,它们已经完成,

即使考虑到利润动机,

它们也不是
为了保护利益而完成的。

可悲的是,我们从未
听说过成功的故事。

因此,当我们研究

有关保护打算干预自然时会发生什么的研究时

我们发现了一个非常不同的故事。

在全球范围内,一个多世纪以来,

科学家们一直在引入
和重新引入

对环境没有危害的动植物。

您可能知道
将狼引入黄石公园的经典成功故事。

但这不是唯一的一个。

想想这个。

在过去的 125 年里,超过 1,000 种物种被引入
整个

北美。

没有任何记录在案的案例,

除了一个

,任何干预
导致当地灭绝。

那是
来自阿拉巴马州一个小泉水的本地淡水鱼。

这些
干预措施中有 99% 已

成功实现其预期结果。

所以你可能会想知道,
如果干预在自然界中如此普遍,

为什么我们没有更多地意识到这一点?

我认为这是因为有时
成功对我们来说实际上是无形的。

以这张

美国访问量最大的国家公园大烟山的图像为例。

我们所看到的原始
荒野实际上是一个非常受管理的环境。

你看到的那些麋鹿,

它们是缺席了 200 年

并被重新引入的结果。

那片草地
是反复控制烧伤的结果。

并且非本地昆虫已被
用于控制病原体和入侵性害虫。

还有一种标志性的物种
可能会回到这片森林。

那是美国栗树。

从历史上看,这棵雄伟的树像

雨点般落下甜坚果,
几个世纪以来一直为人类和动物提供食物。

几千年来,

它是东部落叶林中最丰富的树种

它的木材被用来制作
精美的乐器

和硬木家具。

直到 1800 年,森林

里有 40 亿
棵这样的树,

直到枯萎病,一种进入的真菌枯萎病
,进口的

入侵物种,

完全消灭了这些树。

到 1950 年,所有 40 亿
棵树都被砍伐。

现在,从那时起,

几十年来,科学家们一直在试图

弄清楚如何创造
一种抗枯萎病的栗树。

它发生了。 纽约

州立大学的科学家们
已经确定了一种

从小麦中插入单个基因的方法,该基因
将传递抗枯萎病性。

这些转基因树木现在
是 100 年来第一次有机

会将这些雄伟的
树木恢复到森林中。

美国
农业部目前正在审查这些树木

是否可以释放到野外。

这些都是大胆的举措。

设计珊瑚以抵御
变暖的海水,

恢复美国栗树,

拯救黑脚雪貂的基因。

所有这些举措都需要
公众参与和公众支持。

我认为人们如何
看待干预很重要。

我相信我们需要在
我们对风险的思考方式上带来更多的平衡。 任何科学创新

总会有意想不到的

结果,

但我们今天拥有工具和技术
以及将风险最小化

和利益最大化的协议。

所以下次当你
听到一些大胆的新想法时,

我希望你会首先
考虑预期的后果。

我们没有足够的

时间袖手旁观,看看今天

成千上万
处于危险中的动植物会发生什么。

我们知道,什么都不做
会导致灭绝。

相反,让我们用工具箱中的所有工具仔细
而有意识地计划

以实现和创造我们想要的未来,

而不是
对我们害怕的未来反应过度。

谢谢你。

(掌声)

克里斯·安德森:请留下。

我觉得这很有趣。

在我看来,
你每次挣扎的核心

都是这个,你知道的,这是一个道德问题。

因此,我认为,大多数道德哲学家
会说,从根本上说,

故意的行为

和故意的不作为之间没有区别,
它们会导致同样的事情。

那么为什么在如此多
的公共政策领域,尤其

是在
环境运动中,

人们在行动和不行动之间做出了巨大的区分?

他们宁愿不采取行动
,看到出现问题,也

不愿冒险采取行动。

为什么?

Ryan Phelan:你知道,我认为作为科学家的创新
,他们感受到了公众的压力

他们不想弄错。

他们有资助者挑战
他们采取创新和行动。

他们冒着失去工作、
资金、安全和公众耻辱的风险。

人们更
容易袖手旁观,什么也不做,

而不是拥有它。

我认为这
正是我们想要表达的意思

,如果我们能够鼓励科学家
和创新者大胆尝试,

这对我们所有人来说都是理所当然的。

CA:对。

所以不作为的一个好处
就是你不太可能受到指责。

RP:没错。

你也得不到信用。

CA:不,

Ryan,这些相同的技术,
合成生物学

等等,原则上,它们

允许地球
上多年未见的物种真正灭绝

,原则上,我们可以带回来。

你参与的任何项目

让你兴奋或可能让你害怕

,我们可以看到
这种灭绝正在发生吗?

RP:嗯,从技术上讲,美国
栗树几乎灭绝了。

你知道,人们会看到
一些新芽出现,

因为根在那里,

但它们基本上,你知道,

在 15 年内失败。

所以它们并没有完全灭绝,

但它们非常接近灭绝。

你知道,我们正在研究
从猛犸象

(你们中有些人可能知道)
到旅鸽的所有东西。

但对我来说,这些技术中最鼓舞人心的部分

,灭绝只是一个宏大的、
毛茸茸的、大胆的目标。

如果我们到达那里,那将是盛大的。

但到了那里,所有这些
基因拯救工具和技术

都可以用来拯救濒临灭绝的物种。

这都是一个基本的工具包。

这是必不可少的。

CA:嗯,瑞恩,我想说,你是一个非常有
说服力、有说服力

和值得信赖的声音。

所以非常
感谢你所做的工作

和分享这个。

(掌声)