The surprising and invisible signatures of sea creatures Kakani Katija

So my name is Kakani Katija,
and I’m a bioengineer.

I study marine organisms
in their natural environment.

And what I want to point out,

and at least you can see this
in this visualization,

is that the ocean environment
is a dynamic place.

What you’re seeing
are the kinds of currents,

as well as the whirls,

that are left behind in the ocean
because of tides

or because of winds.

And imagine a marine organism
as living in this environment,

and they’re trying to undergo
their entire lives

while dealing with currents like these.

But what I also want to point out

is that small organisms also create
small fluid motions, as well.

And it’s these fluid motions that I study.

And we can think about them
like being footprints.

So this is my dog Kieran,
and take a look at her footprints.

Footprints provide a lot of information.

Not only do they tell us what kind
of organism left them,

they might also tell us something about
when that organism was there,

but also what kind of behavior,
were they running or were they walking?

And so terrestrial organisms,
like my cute dog Kieran,

might be leaving footprints behind
in dirt or in sand,

but marine organisms leave footprints in
the form of what we call wake structures,

or hydrodynamic signatures,

in fluid.

Now imagine, it’s really hard to see these
kinds of structures

because fluid is transparent.

However, if we add something to the fluid,
we get a completely different picture.

And you can see that these footprints
that marine organisms create

are just dynamic.

They are constantly changing.

And marine organisms also have the ability
to sense these signatures.

They can also inform decisions,

like whether or not they want to continue
following a signature like this

to find a mate or to find food,

or maybe avoid these signatures
to avoid being eaten.

So imagine the ability to be able

to not only see
or visualize these kinds of signatures,

but to also measure them.

This is the engineering side of what I do.

And so what I’ve done is I actually took
a laboratory technique

and miniaturized it
and basically shrunk it down

into the use of underwater housings

to make a device
that a single scuba diver can use.

And so a single scuba diver can go
anywhere from the surface to 40 meters,

or 120 feet deep,

to measure the hydrodynamic signatures
that organisms create.

Before I begin,

I want to immerse you into what
these kinds of measurements require.

So in order to work,
we actually dive at night,

and this is because we’re trying
to minimize any interactions

between the laser and sunlight

and we’re diving in complete darkness

because we do not want to scare away
the organisms we’re trying to study.

And then once we find the organisms
we’re interested in,

we turn on a green laser.

And this green laser is actually
illuminating a sheet of fluid,

and in that fluid,

it’s reflecting off of particles
that are found everywhere in the ocean.

And so as an animal swims through
this laser sheet,

you can see these particles
are moving over time,

and so we actually risk our lives
to get this kind of data.

What you’re going to see

is that on the left these
two particles images

that shows the displacement
of fluid over time,

and using that data,

you can actually extract what the velocity
of that fluid is,

and that’s indicated by the vector plots
that you see in the middle.

And then we can use that data

to answer a variety
of different questions,

not only to understand the rotational
sense of that fluid,

which you see on the right,

but also estimate something
about energetics,

or the kinds of forces that act on
these organisms or on the fluid,

and also evaluate swimming
and feeding performance.

We’ve used this technique on a variety
of different organisms,

but remember, there’s an issue here.

We’re only able to study organisms
that a scuba diver can reach.

And so before I finish, I want to tell you
what the next frontier is

in terms of these kinds of measurements.

And with collaborators at
Monterey Bay Aquarium Research Institute,

we’re developing instrumentation
to go on remotely opperated vehicles

so we can study organisms anywhere
from the surface down to 4000 meters,

or two and a half miles.

And so we can answer really
interesting questions about this organism,

this is a larvacean,

that creates a feeding current and forces
fluids through their mucus house

and extracts nutrients.

And then this animal,

this is a siphonophore,

and they can get to lengths about
half the size of a football field.

And they’re able to swim
vertically in the ocean

by just creating jet propulsion.

And then finally we can answer
these questions

about how swarming organisms,
like krill,

are able to affect
mixing on larger scales.

And this is actually one of the most
interesting results so far

that we’ve collected
using the scuba diving device

in that organisms, especially when they’re
moving in mass,

are able to generate mixing

at levels that are equivalent
to some other physical processes

that are associated with winds and tides.

But before I finish,

I want to leave you all with a question

because I think it’s important
to keep in mind

that technologies today
that we take for granted

started somewhere.

It was inspired from something.

So imagine scientists and engineers
were inspired by birds

to create airplanes.

And something we take for granted,

flying from San Francisco to New York,

is something that
was inspired by an organism.

And as we’re developing
these new technologies

to understand marine organisms,

what we want to do
is answer this question:

how will marine organisms inspire us?

Will they allow us to develop
new underwater technologies,

like underwater vehicles
that look like a jellyfish?

I think it’s a really exciting time
in ocean exploration

because now we have the tools available
to answer this kind of question,

and with the help
of you guys at some point,

you can apply these tools
to answer this kind of question

and also develop technologies
of the future.

Thank you.

所以我的名字是 Kakani Katija
,我是一名生物工程师。


在自然环境中研究海洋生物。

我想指出

,至少你可以
在这个可视化中看到这一点,

海洋环境
是一个动态的地方。

您所看到的
是由于潮汐或风而留在海洋中的各种洋流

以及漩涡

并想象一个海洋
生物生活在这种环境中

,他们试图

在处理这样的电流时经历他们的整个生命。

但我还想指出的

是,小有机体也会产生
小的流体运动。

我研究的正是这些流体运动。

我们可以把它们想象
成脚印。

所以这是我的狗基兰
,看看她的脚印。

足迹提供了很多信息。

它们不仅告诉我们
留下了什么样的有机体,

还可以告诉我们
有机体何时存在,

以及它们的行为是什么,
是在奔跑还是在行走?

因此,陆地生物,
比如我可爱的狗 Kieran,

可能会
在泥土或沙子中

留下脚印,但海洋生物会
以我们所谓的尾流结构

或流体动力学特征的形式

在流体中留下脚印。

现在想象一下,真的很难看到
这些结构,

因为流体是透明的。

然而,如果我们在流体中添加一些东西,
我们会得到完全不同的画面。

你可以
看到海洋生物创造

的这些足迹只是动态的。

它们在不断变化。

海洋生物也有
能力感知这些特征。

他们还可以告知决定,

例如他们是否要继续
遵循这样的签名

来寻找伴侣或寻找食物,

或者可能避免这些签名
以避免被吃掉。

因此,想象一下

不仅能够看到
或可视化这些类型的签名,

而且还能够测量它们的能力。

这是我所做的工程方面的工作。

所以我所做的是我实际上采用了
一种实验室技术

并将其小型化
并基本上将其缩小

到使用水下

外壳来制造
一个单人水肺潜水员可以使用的设备。

因此,一名水肺潜水员
可以从水面到 40 米

或 120 英尺深

的任何地方测量生物体产生的流体动力学
特征。

在我开始之前,

我想让你沉浸在
这些测量的要求中。

所以为了工作,
我们实际上是在晚上潜水

,这是因为我们
试图最大限度地减少

激光和阳光之间的任何相互作用

,我们在完全黑暗中潜水,

因为我们不想吓跑
我们身边的生物 努力学习。

然后,一旦我们找到
我们感兴趣的生物,

我们就会打开绿色激光。

这种绿色激光实际上是在
照亮一片液体

,在这种液体中,

它会反射
出海洋中随处可见的粒子。

所以当动物游过
这个激光片时,

你可以看到这些粒子
随着时间的推移而移动

,所以我们实际上是冒着生命危险
来获取这种数据。

你将看到的

是,在左边这
两个粒子图像

显示
了流体随时间的位移

,使用这些数据,

你实际上可以提取流体的速度

,这由矢量图
表示 你在中间看到。

然后我们可以使用这些数据

来回答
各种不同的问题,

不仅可以了解您在右侧看到的那种流体的旋转感,

还可以估计一些
关于能量学的东西,

或者作用于这些生物体上的力的种类
或在液体上,

并评估游泳
和喂食性能。

我们已经在各种不同的生物体上使用了这种技术

但请记住,这里有一个问题。

我们只能研究
水肺潜水员可以接触到的生物。

所以在我结束之前,我想告诉
你下一个前沿是什么

,就这些测量而言。


蒙特利湾水族馆研究所的合作者一起,

我们正在开发
用于远程操作车辆的仪器,

这样我们就可以研究
从地表到 4000 米

或两英里半的任何地方的生物体。

所以我们可以
回答关于这个有机体的真正有趣的问题,

这是一种幼虫,

它会产生一种摄食电流,迫使
液体通过它们的粘液室

并提取营养。

然后是这种动物,

这是一种虹吸管

,它们的长度
大约是足球场的一半。

他们能够

通过创造喷气推进力在海洋中垂直游泳。

最后,我们可以回答
这些问题

,比如磷虾等成群的生物

如何能够
影响更大规模的混合。

这实际上是

迄今为止我们
使用水肺潜水

设备收集到的最有趣的结果之一,尤其是当它们
大量移动时

,能够产生

与其他一些物理过程相当的混合水平

与风和潮汐有关。

但在我结束之前,

我想问大家一个问题,

因为我认为重要的
是要记住


今天我们认为理所当然的技术是

从某个地方开始的。

它的灵感来自某件事。

想象一下,科学家和工程师
受到鸟类的启发,

创造了飞机。

我们认为理所当然的事情,

从旧金山飞往纽约,

是受到有机体的启发。

当我们正在开发
这些新技术

来了解海洋生物时,

我们想要做的
是回答这个问题:

海洋生物将如何激励我们?

它们会让我们开发
新的水下技术,

比如
看起来像水母的水下航行器吗?

我认为这是海洋探索的一个非常激动人心的时刻

因为现在我们拥有
可以回答此类问题的工具,

并且在你们的帮助
下,在某些时候,

您可以应用这些工具
来回答此类问题

并开发技术
的未来。

谢谢你。