How do nerves work Elliot Krane

How do nerves work?

Are nerves simply the wires in the body

that conduct electricity, like the wires
in the walls of your home

or in your computer?

This is an analogy often made,

but the reality is that nerves have
a much more complex job in the body.

They are not just the wires,
but the cells that are the sensors,

detectors of the external
and internal world,

the transducers that convert
information to electrical impulses,

the wires that transmit these impulses,

the transistors that gate the information

and turn up or down the volume-

and finally, the activators
that take that information

and cause it to have
an effect on other organs.

Consider this. Your mother
gently strokes your forearm

and you react with pleasure.

Or a spider crawls on your forearm
and you startle and slap it off.

Or you brush your forearm against a hot
rack while removing a cake from the oven

and you immediately recoil.

Light touch produced
pleasure, fear, or pain.

How can one kind of cell
have so many functions?

Nerves are in fact bundles
of cells called neurons

and each of these neurons is highly
specialized to carry nerve impulses,

their form of electricity,

in response to only one kind
of stimulus, and in only one direction.

The nerve impulse starts with a receptor,

a specialized part of each nerve,

where the electrical impulse begins.

One nerve’s receptor might
be a thermal receptor,

designed only to respond to a rapid
increase in temperature.

Another receptor type is attached
to the hairs of the forearm,

detecting movement of those hairs, such
as when a spider crawls on your skin.

Yet another kind of neuron
is low-threshold mechanoreceptor,

activated by light touch.

Each of these neurons then carry
their specific information:

pain, warning, pleasure.

And that information is projected
to specific areas of the brain

and that is the electrical impulse.

The inside of a nerve is a fluid
that is very rich in the ion potassium.

It is 20 times higher
than in the fluid outside the nerve

while that outside fluid has 10 times
more sodium than the inside of a nerve.

This imbalance between sodium
outside and potassium inside the cell

results in the inside of the nerve
having a negative electrical charge

relative to the outside of the nerve,

about equal to -70 or -80 millivolts.

This is called
the nerve’s resting potential.

But in response to that stimulus
the nerve is designed to detect,

pores in the cell wall
near the receptor of the cell open.

These pores are specialized
protein channels

that are designed to let
sodium rush into the nerve.

The sodium ions rush
down their concentration gradient,

and when they do, the inside of the nerve
becomes more positively charged-

about +40 millivolts.

While this happens, initially
in the nerve right around the receptor,

if the change in the nerve’s electrical
charge is great enough,

if it reaches what is called threshold,

the nearby sodium ion channels open,
and then the ones nearby those,

and so on, and so forth,

so that the positivity spreads
along the nerve’s membrane

to the nerve’s cell body

and then along the nerve’s long,
thread-like extension, the axon.

Meanwhile, potassium ion channels open,

potassium rushes out of the nerve,

and the membrane voltage
returns to normal.

Actually, overshooting it a bit.

And during this overshoot,

the nerve is resistant to further
depolarization-it is refractory,

which prevents the nerve electrical
impulse from traveling backwards.

Then, ion pumps pump the sodium
back back out of the nerve,

and the potassium back into the nerve,

restoring the nerve to its
normal resting state.

The end of the nerve, the end of the axon,

communicates with the nerve’s target.

This target will be other nerves
in a specialized area of the spinal cord,

to be processed and then
transmitted up to the brain.

Or the nerve’s target may be
another organ, such as a muscle.

When the electrical impulse
reaches the end of the nerve,

small vesicles, or packets, containing
chemical neurotransmitters,

are released by the nerve and rapidly
interact with the nerve’s target.

This process is called
synaptic transmission,

because the connection between the nerve
and the next object in the chain

is called a synapse. And it
is here, in this synapse,

that the neuron’s electrical
information can be modulated,

amplified,

blocked altogether

or translated
to another informational process.

神经是如何工作的?

神经是否只是

体内导电的电线,就像
家中墙壁

或电脑中的电线一样?

这是一个经常做的类比,

但现实是神经
在身体中的工作要复杂得多。

它们不仅是电线,
而且是作为传感器的细胞,

外部
和内部世界的探测器

,将
信息转换为电脉冲的传感器

,传输这些脉冲的电线,

控制信息

并调高或调低的晶体管 体积

——最后
是获取该信息

并使其
对其他器官产生影响的激活剂。

考虑一下。 你的母亲
轻轻抚摸你的前臂

,你的反应很愉快。

或者一只蜘蛛爬在你的前臂上
,你吓了一跳,把它拍了下来。

或者,您
在从烤箱中取出蛋糕时,将前臂靠在热架上,

然后您会立即反冲。

轻触产生
快乐、恐惧或痛苦。

一种细胞怎么可能
有这么多功能?

神经实际上
是称为神经元的细胞束,这些神经元中的

每一个都高度
专门化以携带神经冲动,

它们的电形式

,仅响应
一种刺激,并且仅在一个方向上。

神经冲动从受体开始,受体

是每条神经的一个特殊部分,

是电脉冲开始的地方。

一个神经的感受器可能
是一种热感受器,其

设计目的只是为了对温度的快速升高作出反应

另一种受体类型附着
在前臂的毛发上,

检测这些毛发的运动,
例如当蜘蛛在你的皮肤上爬行时。

还有一种神经元
是低阈值机械感受器,

由轻触激活。

然后,每个神经元都携带
它们的特定信息:

疼痛、警告、快乐。

这些信息被投射
到大脑的特定区域

,这就是电脉冲。

神经内部
是一种富含离子钾的液体。


比神经

外部液体中的钠含量高 20 倍,而外部液体中的
钠含量是神经内部的 10 倍。

这种
细胞外钠和细胞内钾之间的不平衡

导致神经内部相对于神经外部
具有负电荷

大约等于-70或-80毫伏。


称为神经的静息电位。

但是为了响应这种
刺激,神经被设计用来检测,靠近

细胞受体的细胞壁上的毛孔
打开。

这些毛孔是专门的
蛋白质通道

,旨在让
钠涌入神经。

钠离子冲
下它们的浓度梯度

,当它们冲下时,神经内部
变得更加带正电——

大约+40毫伏。

当这种情况发生时,最初
在受体周围的神经中,

如果神经电荷的变化
足够大,

如果达到所谓的阈值

,附近的钠离子通道就会打开,然后附近的钠离子通道就会打开,

依此类推 ,以此类推,

这样阳性信号就会
沿着神经膜传播

到神经细胞体

,然后沿着神经的长
线状延伸,即轴突。

同时,钾离子通道打开,

钾从神经中冲出

,膜电压
恢复正常。

其实有点过头了。

在这个过冲过程中

,神经对进一步的
去极化有抵抗力——它是难治的,

它阻止了神经电
脉冲向后传播。

然后,离子泵将钠泵
出神经

,将钾泵回神经,

使神经恢复到
正常的静息状态。

神经的末端,轴突的末端,

与神经的目标相通。

该目标将是
脊髓特定区域中的其他神经,

将被处理然后
传输到大脑。

或者神经的目标可能是
另一个器官,例如肌肉。

当电脉冲
到达神经末端时

,含有化学神经递质的小囊泡或小包

被神经释放并迅速
与神经的目标相互作用。

这个过程称为
突触传递,

因为神经
与链中下一个对象之间的连接

称为突触。
正是在这里,在这个突触中

,神经元的电
信息可以被调制、

放大、

完全阻断

或转化
为另一个信息过程。