How do nuclear power plants work M. V. Ramana and Sajan Saini

On a December afternoon in Chicago
during the middle of World War II,

scientists cracked open the nucleus
at the center of the uranium atom

and turned nuclear mass into energy
over and over again.

They did this by creating
for the first time

a chain reaction inside a new
engineering marvel:

the nuclear reactor.

Since then, the ability to mine great
amounts of energy from uranium nuclei

has led some to bill nuclear power

as a plentiful utopian
source of electricity.

A modern nuclear reactor generates enough
electricity from one kilogram of fuel

to power an average American household
for nearly 34 years.

But rather than dominate the global
electricity market,

nuclear power has declined from
an all-time high of 18% in 1996

to 11% today.

And it’s expected to drop further
in the coming decades.

What happened to the great promise
of this technology?

It turns out nuclear power
faces many hurdles,

including high construction costs

and public opposition.

And behind these problems lie
a series of unique engineering challenges.

Nuclear power relies on the fission
of uranium nuclei

and a controlled chain reaction

that reproduces this splitting
in many more nuclei.

The atomic nucleus is densely packed
with protons and neutrons

bound by a powerful nuclear force.

Most uranium atoms have a total
of 238 protons and neutrons,

but roughly one in every 140
lacks three neutrons,

and this lighter isotope is less
tightly bound.

Compared to its more abundant cousin,

a strike by a neutron easily splits
the U-235 nuclei

into lighter, radioactive elements
called fission products,

in addition to two to three neutrons,

gamma rays,

and a few neutrinos.

During fission, some nuclear mass
transforms into energy.

A fraction of the newfound energy
powers the fast-moving neutrons,

and if some of them strike uranium nuclei,

fission results in a second
larger generation of neutrons.

If this second generation of neutrons
strike more uranium nuclei,

more fission results in an even
larger third generation, and so on.

But inside a nuclear reactor,

this spiraling chain reaction is tamed
using control rods

made of elements that capture excess
neutrons and keep their number in check.

With a controlled chain reaction,

a reactor draws power steadily
and stably for years.

The neutron-led chain reaction
is a potent process driving nuclear power,

but there’s a catch that can result

in unique demands
on the production of its fuel.

It turns out, most of the neutrons emitted
from fission have too much kinetic energy

to be captured by uranium nuclei.

The fission rate is too low
and the chain reaction fizzles out.

The first nuclear reactor built in Chicago
used graphite as a moderator

to scatter and slow down
neutrons just enough

to increase their capture by uranium
and raise the rate of fission.

Modern reactors commonly use
purified water as a moderator,

but the scattered neutrons are still
a little too fast.

To compensate
and keep up the chain reaction,

the concentration of U-235 is enriched

to four to seven times
its natural abundance.

Today, enrichment is often done by
passing a gaseous uranium compound

through centrifuges

to separate lighter U-235
from heavier U-238.

But the same process can be continued
to highly enrich U-235

up to 130 times its natural abundance

and create an explosive chain reaction
in a bomb.

Methods like centrifuge processing
must be carefully regulated

to limit the spread of bomb-grade fuel.

Remember, only a fraction
of the released fission energy

goes into speeding up neutrons.

Most of the nuclear power goes into the
kinetic energy of the fission products.

Those are captured inside the reactor
as heat by a coolant,

usually purified water.

This heat is eventually used to drive
an electric turbine generator by steam

just outside the reactor.

Water flow is critical
not only to create electricity,

but also to guard against the most dreaded
type of reactor accident,

the meltdown.

If water flow stops because a pipe
carrying it breaks,

or the pumps that push it fail,

the uranium heats up very quickly
and melts.

During a nuclear meltdown,

radioactive vapors escape
into the reactor,

and if the reactor fails to hold them,

a steel and concrete containment building
is the last line of defense.

But if the radioactive gas pressure
is too high,

containment fails and the gasses
escape into the air,

spreading as far
and wide as the wind blows.

The radioactive fission products
in these vapors

eventually decay into stable elements.

While some decay in a few seconds,

others take hundreds
of thousands of years.

The greatest challenge
for a nuclear reactor

is to safely contain these products

and keep them from harming humans
or the environment.

Containment doesn’t stop mattering
once the fuel is used up.

In fact, it becomes an even greater
storage problem.

Every one to two years,

some spent fuel is removed from reactors

and stored in pools of water
that cool the waste

and block its radioactive emissions.

The irradiated fuel is a mix of uranium
that failed to fission,

fission products,

and plutonium, a radioactive material
not found in nature.

This mix must be isolated from
the environment

until it has all safely decayed.

Many countries propose deep time storage
in tunnels drilled far underground,

but none have been built,

and there’s great uncertainty about
their long-term security.

How can a nation that has existed
for only a few hundred years

plan to guard plutonium
through its radioactive half-life

of 24,000 years?

Today, many nuclear power plants
sit on their waste, instead,

storing them indefinitely on site.

Apart from radioactivity, there’s an
even greater danger with spent fuel.

Plutonium can sustain a chain reaction

and can be mined from the waste
to make bombs.

Storing spent fuel is thus not only
a safety risk for the environment,

but also a security risk for nations.

Who should be the watchmen to guard it?

Visionary scientists from the early years
of the nuclear age

pioneered how to reliably tap
the tremendous amount of energy

inside an atom -

as an explosive bomb

and as a controlled power source
with incredible potential.

But their successors have learned
humbling insights

about the technology’s not-so-utopian
industrial limits.

Mining the subatomic realm makes for
complex, expensive, and risky engineering.

在二战中期的芝加哥,12 月的一个下午

科学家们打开
了铀原子中心的原子核,一次又一次

地将核质量转化为能量

他们通过

在一个新的
工程奇迹

:核反应堆中首次创造连锁反应来做到这一点。

从那时起,
从铀核中开采大量能量的能力

导致一些人将核能

视为一种丰富的乌托邦
式电力来源。

现代核反应堆
从一公斤燃料

中产生的电力足以为美国普通家庭
提供近 34 年的电力。

但核电并没有主导全球
电力市场,而是


1996 年 18% 的历史最高水平下降

到今天的 11%。

预计
在未来几十年内将进一步下降。 这项技术

的巨大前景发生了什么

事实证明,核电
面临许多障碍,

包括高昂的建设成本

和公众反对。

而在这些问题的背后隐藏
着一系列独特的工程挑战。

核能依赖于
铀核的裂变

和受控的链式反应

,该反应
在更多的核中重现这种分裂。

原子核中密布
着质子和中子,

被强大的核力束缚着。

大多数铀原子总共
有 238 个质子和中子,

但大约每 140 个中就有一个
缺少三个中子,

而且这种较轻的同位素结合不那么
紧密。

与其更丰富的表亲相比,

中子的撞击很容易
将 U-235 原子核分裂

成更轻的放射性元素,
称为裂变产物

,此外还有两到三个中子、

伽马射线

和一些中微子。

在裂变过程中,一些核质量
转化为能量。

一小部分新发现的能量
为快速移动的中子提供动力

,如果其中一些撞击铀核,

裂变会产生第二
代更大的中子。

如果第二代中子
撞击更多的铀原子核,

更多的裂变会
产生更大的第三代,以此类推。

但在核反应堆内部,

这种螺旋链式反应是
使用控制棒来控制的,控制棒

由捕获过量
中子并控制其数量的元素制成。

通过受控的

连锁反应,反应堆可以
稳定稳定地使用多年。

中子主导的连锁反应
是推动核电的有效过程,

但有一个问题可能导致

对其燃料生产的独特需求。

事实证明,大多数裂变释放的中子
具有太多的动能

,无法被铀原子核捕获。

裂变率太低
,连锁反应失败。

在芝加哥建造的第一座核反应堆
使用石墨作为慢化剂

来散射和减慢
中子的速度,刚好

足以增加铀对它们的捕获
并提高裂变速率。

现代反应堆通常使用
纯净水作为慢化剂,

但散射的中子仍然
有点太快了。

为了补偿
和保持连锁反应,

U-235 的浓度被浓缩


其天然丰度的四到七倍。

今天,浓缩通常通过
将气态铀化合物

通过离心机

来分离较轻的 U-235
和较重的 U-238。

但同样的过程可以继续
使 U-235 高度浓缩

至其自然丰度的 130 倍,


在炸弹中产生爆炸性连锁反应。 必须对

离心机处理等方法
进行仔细监管,

以限制炸弹级燃料的扩散。

请记住,只有一小
部分释放的裂变

能量用于加速中子。

大部分核能
转化为裂变产物的动能。

这些在反应堆内
被冷却剂(

通常是纯净水)作为热量捕获。

这些热量最终被用于在反应堆外
通过蒸汽驱动电动涡轮发电机

水流
不仅对发电至关重要,

而且对防止最
可怕的反应堆事故

——熔毁也很重要。

如果由于
输送它的管道破裂

或推动它的泵发生故障而导致水流停止,

则铀会迅速升温
并熔化。

在核熔毁期间,

放射性蒸气逸出
到反应堆中

,如果反应堆无法容纳它们

,钢筋和混凝土的安全壳建筑
是最后一道防线。

但是,如果放射性气体
压力过高,

安全壳就会失效,气体会
逃逸到空气中,

并随着风的吹动而扩散开来。

这些蒸气中的放射性裂变产物

最终会衰变为稳定的元素。

有些会在几秒钟内衰减,

有些则需要
数十万年。 核反应堆

面临的最大挑战

是安全地容纳这些产品

并防止它们对人类
或环境造成伤害。

一旦燃料用完,遏制就不再重要。

事实上,它变成了一个更大的
存储问题。

每隔一到两年,

就会从反应堆中取出一些乏燃料

并储存在水池
中,以冷却废物

并阻止其放射性排放。

辐照燃料是
未能裂变的铀、

裂变产物

和钚的混合物,钚
是自然界中不存在的放射性物质。

这种混合物必须与环境隔离,

直到它全部安全腐烂。

许多国家提出在
深埋地下的隧道中进行深度存储,

但尚未建成,其长期安全

性存在很大不确定性

一个只存在了几百年的国家怎么能

计划在钚
的 24,000 年的放射性半衰期中保护它

呢?

今天,许多核电站
坐在他们的废物上,而是

无限期地在现场储存它们。

除了放射性之外
,乏燃料还有更大的危险。

钚可以维持连锁反应

,可以从废物中开采出来
制造炸弹。

因此,储存乏燃料不仅
对环境构成安全风险,

而且对国家也构成安全风险。

谁应该是守卫它的守望者? 核时代

早期有远见的科学家

开创了如何可靠地利用

原子内部的巨大能量——

作为爆炸性炸弹


具有不可思议潜力的受控电源。

但他们的继任者已经

了解到这项技术并非乌托邦式的
工业限制。

挖掘亚原子领域会导致
复杂、昂贵且有风险的工程。