Can the ocean run out of oxygen Kate Slabosky

For most of the year, the Gulf of Mexico
is teeming with marine life,

from tiny crustaceans
to massive baleen whales.

But every summer, disaster strikes.

Around May,
animals begin to flee the area.

And soon, creatures that can’t swim
or can’t swim fast enough

begin to suffocate and die off
in massive numbers.

From late spring to early autumn,

thousands of square kilometers
along the coast become a marine dead zone—

unable to support
most forms of aquatic life.

This strange annual curse isn’t unique;

dead zones like this one
have formed all over the world.

But to explore what’s creating
these lethal conditions,

we first need to understand
how a healthy marine ecosystem functions.

In any body of water that receives
sufficient sunlight,

plant-like organisms such as algae
and cyanobacteria thrive.

Clouds of algae streak the surface
of deep waters,

and in shallower regions, large seaweeds
and seagrass cover the ground.

Not only do these organisms form
the foundation of local food chains,

their photosynthesis provides the oxygen
necessary for aquatic animals to survive.

Besides sunlight and C02,

algae growth also depends on nutrients
like phosphorus and nitrogen.

While such resources
are typically in short supply,

sometimes the surrounding watershed can
flood coastal waters with these nutrients.

For example, a large rainstorm
might wash nutrient-rich sediment

from a forest into a lake.

These additional resources lead
to a massive increase in algae growth

known as eutrophication.

But rather than providing
more food and oxygen,

this surge of growth
has deadly consequences.

As more algae grows on the surface,
it blocks sunlight to the plants below.

These light-deprived plants
die off and decompose

in a process which uses up the water’s
already depleted oxygen supply.

Over time, this can reduce
the oxygen content

to less than 2 milligrams
of oxygen per liter,

creating an uninhabitable dead zone.

There are rare bodies of water
that rely on natural eutrophication.

Regions like the Bay of Bengal
are full of bottom-dwelling marine life

that has adapted
to low-oxygen conditions.

But human activity has made eutrophication
a regular and widespread occurrence.

Nutrient-rich waste from our sewage
systems and industrial processes

often end up in lakes, estuaries
and coastal waters.

And the Gulf of Mexico is one
of the largest dumping zones on earth

for one particular pollutant: fertilizer.

American agriculture relies
heavily on

nitrogen and phosphate-based fertilizers.

31 states, including America’s
top agricultural producers,

are connected
to the Mississippi River Basin,

and all of their runoff
drains into the Gulf of Mexico.

Farmers apply most of this fertilizer
during the spring planting season,

so the nutrient flood
occurs shortly after.

In the Gulf,

decomposing algae sinks into the band
of cold saltwater near the seafloor.

Since these dense lower waters don’t mix
with the warmer freshwater above,

it can take four months
for tropical storms

to fully circulate oxygenated water
back into the gulf.

This dead zone currently costs
U.S. seafood and tourism industries

as much as $82 million a year,

and that cost will only increase
as the dead zone gets bigger.

On average the gulf dead zone
is roughly 15,000 square kilometers,

but in 2019 it grew
to over 22,000 square kilometers—

approximately the size of New Jersey.

Human activity is similarly responsible
for growing dead zones around the world.

So what can be done?

In the short term, countries can set
tighter regulations on industrial run-off,

and ban the dumping of untreated
sewage into ocean waters.

On farms, we can plant buffer zones

composed of trees and shrubs
to absorb runoff.

However, long term solutions will require
radical changes to the way we grow food.

Farmers are currently incentivized
to use techniques

that reduce the health of the soil

and rely heavily
on nitrogen-rich fertilizers.

But there would be less need
for these chemicals

if we restore the soil’s natural nutrients

by planting diverse crops that manage
soil erosion and fertility.

Hopefully we can make
these fundamental changes soon.

Because if we don’t,

the future of our marine ecosystems
may be dead in the water.

一年中的大部分时间,墨西哥湾
都充满了海洋生物,

从小型甲壳类动物
到大型须鲸。

但每年夏天,灾难都会袭来。

5 月左右,
动物开始逃离该地区。

很快,
不会游泳或游泳不够快的生物

开始大量窒息死亡

从晚春到初秋,沿岸

数千平方公里
成为海洋死区——

无法支持
大多数水生生物。

这种奇怪的年度诅咒并不是独一无二的。

像这样的死区
已经在世界各地形成。

但要探索造成
这些致命条件的原因,

我们首先需要
了解健康的海洋生态系统是如何运作的。

在任何接受充足阳光的水体中,

藻类和蓝细菌等类植物生物都会
茁壮成长。

藻类云在深水表面形成条纹

,在较浅的区域,大型海藻
和海草覆盖地面。

这些生物不仅构成
了当地食物链的基础,

它们的光合作用还
为水生动物提供了生存所需的氧气。

除了阳光和二氧化碳,

藻类的生长还依赖于
磷和氮等营养物质。

虽然这些资源
通常供不应求,但

有时周围的流域可能会
用这些营养物质淹没沿海水域。

例如,一场大暴雨
可能会将富含营养的沉积物

从森林冲入湖中。

这些额外的资源
导致藻类生长的大量增加,

称为富营养化。

但是
,这种增长的激增并没有提供更多的食物和氧气,而是

产生了致命的后果。

随着更多的藻类在地表生长,
它会阻挡阳光照射到下面的植物。

这些光照不足的植物

在一个过程中死亡并分解,这会耗尽水中
已经耗尽的氧气供应。

随着时间的推移,这可以
将氧气含量降低

到每升不到 2
毫克氧气,

从而形成一个无法居住的死区。

很少有水
体依赖自然富营养化。

像孟加拉湾这样的
地区充满了适应低氧条件的底栖海洋生物

但是人类活动使富营养化
成为一种经常性和普遍性的现象。

我们的污水系统和工业过程产生的富含营养的废物

通常最终进入湖泊、河口
和沿海水域。

墨西哥湾是
地球上最大

的一种特定污染物倾倒区之一:化肥。

美国农业
严重依赖

氮肥和磷肥。

包括美国最大的农业生产国在内的 31 个州

与密西西比河流域相连

,它们的所有径流都
流入墨西哥湾。

农民
在春季种植季节施用大部分这种肥料,

因此
不久之后就会出现养分泛滥。

在海湾,

分解的藻类沉入
海底附近的冷盐水带中。

由于这些密集的较低水域不会
与上面较温暖的淡水混合

,热带风暴可能需要四个月的时间才能将

含氧水完全循环
回海湾。

目前,这个死区每年给
美国海鲜和旅游业

造成的损失高达 8200 万美元,

而且
随着死区的扩大,这一成本只会增加。

平均而言,海湾死区
面积约为 15,000 平方公里,

但在 2019 年增长
到超过 22,000 平方公里——

大约相当于新泽西州的面积。

人类活动同样
对世界范围内不断增长的死区负责。

那么可以做些什么呢?

在短期内,各国可以
对工业径流制定更严格的规定,

并禁止将未经处理的污水倾倒
到海水中。

在农场,我们可以种植

由树木和灌木组成的缓冲区
来吸收径流。

然而,长期解决方案需要
彻底改变我们种植粮食的方式。

目前鼓励农民

使用降低土壤健康

并严重
依赖富氮肥料的技术。

但是,

如果我们

通过种植能够控制
土壤侵蚀和肥力的多种作物来恢复土壤的天然养分,那么对这些化学物质的需求就会减少。

希望我们能
尽快做出这些根本性的改变。

因为如果我们不这样做,

我们海洋生态系统的未来
可能会死在水中。