Glowinthedark sharks and other stunning sea creatures David Gruber

I’m a marine biologist
and an explorer-photographer

with National Geographic,

but I want to share a secret.

This image is totally incorrect,

totally incorrect.

I see a couple of people
crying in the back

that I’ve blown their idea of mermaids.

All right, the mermaid is indeed real,

but anyone who’s gone on a dive

will know that the ocean
looks more like this.

It’s because the ocean
is this massive filter,

and as soon as you start going underwater,

you’re going to lose your colors,

and it’s going to get dark
and blue very quickly.

But we’re humans –
we’re terrestrial mammals.

And we’ve got trichromatic vision,

so we see in red, green and blue,

and we’re just complete color addicts.

We love eye-popping color,

and we try to bring this eye-popping color

underwater with us.

So there’s been a long and sordid history
of bringing color underwater,

and it starts 88 years ago
with Bill Longley and Charles Martin,

who were trying to take
the first underwater color photograph.

And they’re in there
with old-school scuba suits,

where you’re pumping air down to them,

and they’ve got a pontoon
of high-explosive magnesium powder,

and the poor people
at the surface are not sure

when they’re going to pull the string
when they’ve got their frame in focus,

and – boom! – a pound
of high explosives would go off

so they could put
a little bit of light underwater

and get an image
like this beautiful hogfish.

I mean, it’s a gorgeous image,
but this is not real.

They’re creating an artificial environment

so we can satisfy
our own addiction to color.

And looking at it the other way,
what we’ve been finding

is that instead of bringing color
underwater with us,

that we’ve been looking at the blue ocean,

and it’s a crucible of blue,

and these animals living there
for millions of years

have been evolving all sorts of ways
to take in that blue light

and give off other colors.

And here’s just a little sample
of what this secret world looks like.

It’s like an underwater light show.

(Music)

Again, what we’re seeing here
is blue light hitting this image.

These animals are absorbing the blue light

and immediately transforming this light.

So if you think about it, the ocean
is 71 percent of the planet,

and blue light can extend down
to almost a 1,000 meters.

As we go down underwater,

after about 10 meters,
all the red is gone.

So if you see anything
under 10 meters that’s red,

it’s an animal transforming
and creating its own red.

This is the largest single monochromatic
blue environment on our planet.

And my gateway into this world
of biofluorescence begins with corals.

And I want to give
a full TED Talk on corals

and just how cool these things are.

One of the things that they do,
one of their miraculous feats,

is they produce lots of these
fluorescent proteins,

fluorescent molecules.

And in this coral, it could be making
up to 14 percent of its body mass –

could be this fluorescent protein.

So you wouldn’t be making, like,
14 percent muscle and not using it,

so it’s likely doing something
that has a functional role.

And for the last 10, 15 years,
this was so special to me,

because this molecule has turned out
to be one of the most revolutionary tools

in biomedical science,

and it’s allowing us
to better see inside ourselves.

So, how do I study this?

In order to study biofluorescence,
we swim at night.

And when I started out,

I was just using these blue
duct-tape filters over my strobe,

so I could make sure
I’m actually seeing the light

that’s being transformed by the animals.

We’re making an exhibit
for the Museum of Natural History,

and we’re trying to show off how great
the fluorescent corals are on the reef,

and something happened
that just blew me away:

this.

In the middle of our corals,

is this green fluorescent fish.

It’s the first time we’ve ever seen
a green fluorescent fish

or any vertebrate for that matter.

And we’re rubbing our eyes,
checking the filters,

thinking that somebody’s maybe
playing a joke on us with the camera,

but the eel was real.

It was the first green
fluorescent eel that we found,

and this just changed
my trajectory completely.

So I had to put down my corals and team up

with a fish scientist, John Sparks,

and begin a search around the world

to see how prevalent this phenomenon is.

And fish are much more
interesting than corals,

because they have really advanced vision,

and some of the fish even have,
the way that I was photographing it,

they have lenses in their eyes
that would magnify the fluorescence.

So I wanted to seek this out further.

So we designed a new set of gear

and we’re scouring the reefs
around the world,

looking for fluorescent life.

And it’s a bit like “E.T. phone home.”

We’re out there swimming
with this blue light,

and we’re looking for a response,

for animals to be absorbing the light
and transferring this back to us.

And eventually, we found
our photobombing Kaupichphys eel.

It’s a really shy, reclusive eel
that we know almost nothing about.

They’re only about the size of my finger,

and they spend about 99.9 percent
of their time hidden under a rock.

But these eels do come out to mate
under full-moon nights,

and that full-moon night
translates underwater to blue.

Perhaps they’re using this
as a way to see each other,

quickly find each other, mate,

go back into their hole
for the next long stint of time.

But then we started to find
other fluorescent marine life,

like this green fluorescent bream,

with its, like, racing stripes
along its head and its nape,

and it’s almost camouflaged
and fluorescing at the same intensity

as the fluorescent coral there.

After this fish,

we were introduced to this red
fluorescent scorpionfish

cloaked and hidden on this rock.

The only time we’ve ever seen this,
it’s either on red fluorescent algae

or red fluorescent coral.

Later, we found this stealthy
green fluorescent lizardfish.

These lizardfish come in many varieties,

and they look almost exactly alike
under white light.

But if you look at them
under fluorescent light,

you see lots of patterns,

you can really see
the differences among them.

And in total – we just reported
this last year –

we found over 200 species
of biofluorescent fish.

One of my inspirations is French artist
and biologist Jean Painlevé.

He really captures this entrepreneuring,
creative spirit in biology.

He would design his own gear,
make his own cameras,

and he was fascinated with the seahorse,
Hippocampus erectus,

and he filmed for the first time
the seahorse giving birth.

So this is the male seahorse.

They were one of the first fish
to start swimming upright

with their brain above their head.

The males give birth,

just phenomenal creatures.

So he stayed awake for days.

He even put this electrical visor
on his head that would shock him,

so he could capture this moment.

Now, I wish I could have shown Painlevé

the moment where we found
biofluorescent seahorses

in the exact same species
that he was studying.

And here’s our footage.

(Music)

They’re the most cryptic fish.

You could be swimming right on top of them
and not see the seahorse.

They would blend right into the algae,
which would also fluoresce red,

but they’ve got great vision,

and they go through
this long mating ritual,

and perhaps they’re using it
in that effect.

But things got pretty edgy

when we found green
fluorescence in the stingray,

because stingrays are
in the Elasmobranch class,

which includes …

sharks.

So I’m, like, a coral biologist.

Somebody’s got to go down and check
to see if the sharks are fluorescent.

And there I am.

(Laughter)

And I was like, “Maybe I should
go back to corals.”

(Laughter)

It turns out that these sharks
are not fluorescent.

And then we found it.

In a deep, dark canyon
off the coast of California,

we found the first
biofluorescent swellshark,

right underneath all the surfers.

Here it is.

They’re just about a meter long.
It’s called a swellshark.

And they call them a swellshark
because if they’re threatened,

they can gulp down water
and blow up like an inner tube,

about twice their size,

and wedge themselves under a rock,
so they don’t get eaten by a predator.

And here is our first footage
of these biofluorescent swellsharks.

Just magnificent – I mean,
they’re showing these distinct patterns,

and there are areas that are fluorescent
and areas that are not fluorescent,

but they’ve also got these
twinkling spots on them

that are much brighter
than other parts of the shark.

But this is all beautiful to see.

I was like, this is gorgeous.

But what does it mean to the shark?

Can they see this?

And we looked in the literature,

and nothing was known
about this shark’s vision.

So I took this shark to eye specialist
Ellis Loew at Cornell University,

and we found out that this shark
sees discretely and acutely

in the blue-green interface,

probably about 100 times better
than we can see in the dark,

but they only see blue-green.

So what it’s doing
is taking this blue world

and it’s absorbing the blue,
creating green.

It’s creating contrast
that they can indeed see.

So we have a model,

showing that it creates an ability
for them to see all these patterns.

And males and females
also have, we’re finding,

distinct patterns among them.

But our last find came really just
a few miles from where we are now,

in the Solomon Islands.

Swimming at night, I encountered
the first biofluorescent sea turtle.

So now it’s going from fish
and sharks into reptiles,

which, again, this is only one month old,

but it shows us
that we know almost nothing

about this hawksbill turtle’s vision.

And it makes me think about
how much more there is to learn.

And here in the Solomon Islands,

there’s only a few thousand
breeding females of this species left,

and this is one of the hotspots for them.

So it shows us how much we need
to really protect these animals

while they’re still here,
and understand them.

In thinking about biofluorescence,

I wanted to know, how deep does it go?

Does this go all the way
to the bottom of the ocean?

So we started using submarines,
and we equipped them

with special blue lights
on the front here.

And we dropped down,

and we noticed one important thing –

that as we get down to 1,000 meters,

it drops off.

There’s no biofluorescent marine life
down there, below 1,000 meters –

almost nothing, it’s just darkness.

So it’s mainly a shallow phenomenon.

And below 1,000 meters,

we encountered the bioluminescent zone,

where nine out of 10 animals
are actually making their own lights

and flashing and blinking.

As I try to get deeper,

this is slapping on a one-person
submarine suit –

some people call this my “Jacques Cousteau
meets Woody Allen” moment.

(Laughter)

But as we explore down here,

I was thinking about: How do we
interact with life delicately?

Because we’re entering
a new age of exploration,

where we have to take great care,

and we have to set examples
how we explore.

So I’ve teamed up with roboticist Rob Wood
at Harvard University,

and we’ve been designing
squishy underwater robot fingers,

so we can delicately interact
with the marine life down there.

The idea is that most of our technologies
to explore the deep ocean

come from oil and gas and military,

who, you know, they’re not really
caring to be gentle.

Some corals could be 1,000 years old.

You don’t want to just go
and crush them with a big claw.

So my dream is something like this.

At night, I’m in a submarine,

I have force-feedback gloves,

and I could delicately set up
a lab in the front of my submarine,

where the squishy robot fingers

are delicately collecting
and putting things in jars,

and we can conduct our research.

Back to the powerful applied applications.

Here, you’re looking at a living brain

that’s using the DNA
of fluorescent marine creatures,

this one from jellyfish and corals,

to illuminate the living brain
and see its connections.

It’s funny that we’re using RGB

just to kind of satisfy
our own human intuition,

so we can see our brains better.

And even more mind-blowing,

is my close colleague
Vincent Pieribone at Yale,

who has actually designed and engineered
a fluorescent protein

that responds to voltage.

So he could see
when a single neuron fires.

You’re essentially looking at
a portal into consciousness

that was designed by marine creatures.

So this brings me all back
to perspective and relationship.

From deep space,

our universe looks
like a human brain cell,

and then here we are in the deep ocean,

and we’re finding
marine creatures and cells

that can illuminate the human mind.

And it’s my hope
that with illuminated minds,

we could ponder the overarching
interconnectedness of all life,

and fathom how much more lies in store

if we keep our oceans healthy.

Thank you.

(Applause)

我是国家地理的海洋生物学家
和探险家摄影师

但我想分享一个秘密。

这张图完全不正确,

完全不正确。

我看到有几个人
在背后哭着

说我打破了他们对美人鱼的想法。

好吧,美人鱼确实是真的,

但是任何潜水过的人

都会知道海洋
看起来更像这样。

这是因为海洋
是一个巨大的过滤器

,一旦你开始潜入水下,

你就会失去颜色

,很快就会变暗
变蓝。

但我们是人类——
我们是陆地哺乳动物。

而且我们有三色视觉,

所以我们看到红色、绿色和蓝色

,我们只是完全的颜色上瘾者。

我们喜欢令人瞠目结舌的颜色

,我们试图将这种令人瞠目结舌的颜色带到

水下。

因此,将色彩带入水下有着悠久而肮脏的历史

,它始于 88 年前
的比尔·朗利和查尔斯·马丁,

他们试图
拍摄第一张水下彩色照片。

他们在那里
穿着老式的潜水服,

在那里你把空气抽到他们身上

,他们有一个
高爆镁粉的浮筒,

地表的穷人不确定

他们什么时候
当他们的框架对准焦点时,他们会拉绳子,

然后——砰! ——
一磅烈性炸药会爆炸,

这样他们就可以在
水下放一点光

,得到
像这条美丽的猪鱼一样的图像。

我的意思是,这是一个华丽的图像,
但这不是真实的。

他们正在创造一个人工环境,

这样我们就可以满足
自己对色彩的沉迷。

换个角度看,
我们发现,我们没有

把颜色带到
水下

,而是看到了蓝色的海洋

,它是蓝色的熔炉

,这些动物在那里生活
了数百万 多年来

一直在发展各种方式
来吸收蓝光

并散发出其他颜色。

这里
只是这个秘密世界的一个小例子。

这就像一场水下灯光秀。

(音乐)

再一次,我们在这里看到的
是蓝光照射到这张照片上。

这些动物正在吸收蓝光

并立即转换这种光。

所以如果你想一想,海洋
占地球的 71%

,蓝光可以延伸
到近 1000 米。

当我们潜入水下,

大约 10 米后,
所有的红色都消失了。

因此,如果你
在 10 米以下看到任何红色的东西,

它就是一种动物,它正在转变
并创造出自己的红色。

这是我们星球上最大的单一单色
蓝色环境。

我进入这个
生物荧光世界的大门始于珊瑚。

我想
就珊瑚

和这些东西有多酷做一个完整的 TED 演讲。

他们所做的一件事
,他们的奇迹之一,

就是他们产生了大量的
荧光蛋白,

荧光分子。

在这个珊瑚中,它可能
占其体重的 14%——

可能是这种荧光蛋白。

所以你不会像
14% 的肌肉而不使用它,

所以它很可能在做
一些具有功能性作用的事情。

在过去的 10 年、15 年里,
这对我来说非常特别,

因为这种分子已被
证明是

生物医学科学中最具革命性的工具之一

,它让我们
能够更好地了解自己的内心。

那么,我该如何学习呢?

为了研究生物荧光,
我们在晚上游泳。

当我开始时,

我只是
在我的闪光灯上使用这些蓝色胶带过滤器,

所以我可以确保
我真的看到

了动物正在改变的光。

我们正在为自然历史博物馆做一个展览

,我们试图展示
珊瑚礁上的荧光珊瑚有多棒,

发生了一件让我大吃一惊的事情:

这个。

在我们的珊瑚中间,

是这条绿色的荧光鱼。

这是我们第一次
看到绿色荧光鱼

或任何脊椎动物。

我们揉着眼睛,
检查过滤器,

想着可能有人
在用相机开我们的玩笑,

但鳗鱼是真的。

这是我们发现的第一条绿色
荧光鳗鱼

,这完全改变了
我的轨迹。

所以我不得不放下我的珊瑚,

与鱼类科学家约翰斯帕克斯合作

,开始在世界各地搜索

,看看这种现象有多普遍。


比珊瑚更有趣,

因为它们的视力非常先进

,有些鱼甚至有
,就像我拍摄的那样,

它们的眼睛
里有可以放大荧光的镜片。

所以我想进一步寻找这个。

所以我们设计了一套新的装备

,我们正在世界各地的珊瑚礁中

寻找荧光生命。

这有点像“外星人打电话回家”。

我们在外面
与这蓝光一起游泳

,我们正在寻找回应,

让动物吸收光
并将其传回给我们。

最终,我们找到
了照片轰炸的 Kaupichphys 鳗鱼。

这是一种非常害羞、隐居的鳗鱼
,我们对此几乎一无所知。

它们只有我手指那么大,

而且大约 99.9
% 的时间都隐藏在岩石下。

但是这些鳗鱼确实会
在满月之夜出来交配,

而那个满月之夜在
水下转化为蓝色。

也许他们正在使用
这种方式来看到对方,

快速找到对方,交配,

在下一段很长的时间里回到他们的洞里。

但后来我们开始发现
其他荧光海洋生物,

比如这条绿色荧光鲷鱼

,它的头部和颈背上有类似的条纹,

几乎被伪装
起来,发出的荧光强度

与那里的荧光珊瑚相同。

在这条鱼之后,

我们被介绍到这条

隐藏在这块岩石上的红色荧光蝎子鱼。

我们唯一一次见过这种情况,
它要么是在红色荧光藻类上,要么是在

红色荧光珊瑚上。

后来,我们发现了这种隐身的
绿色荧光蜥蜴鱼。

这些蜥蜴鱼有很多种,在白光

下它们看起来几乎一模一样

但是如果你
在荧光灯下看它们,

你会看到很多图案,

你真的可以看到
它们之间的差异。

总的来说——我们去年刚刚报道
过——

我们发现了 200 多种
生物荧光鱼。

我的灵感之一是法国艺术家
和生物学家 Jean Painlevé。

他真正捕捉到
了生物学中的这种创业精神和创新精神。

他会设计自己的装备,
制作自己的相机

,他对海马直立海马很着迷

,他第一次拍摄
了海马分娩。

所以这是雄性海马。

它们是第一批
开始直立游泳的鱼之一

,它们的大脑在头顶上方。

雄性生育,

只是非凡的生物。

所以他一连几天都没有睡。

他甚至把
这个会让他震惊的电子面罩戴在头上,

这样他就可以捕捉到这一刻。

现在,我希望我能向 Painlevé 展示

我们

在他正在研究的完全相同的物种
中发现生物荧光海马的那一刻。

这是我们的镜头。

(音乐)

它们是最神秘的鱼。

你可能在它们上面游泳
而看不到海马。

它们会直接融入藻类中,藻类
也会发出红色荧光,

但它们的视力很好,

而且它们会经历
这种漫长的交配仪式

,也许它们正在使用它
来达到这种效果。

但是

当我们
在黄貂鱼身上发现绿色荧光时,事情变得非常前卫,

因为黄貂鱼
属于 Elasmobranch 类,

其中包括……

鲨鱼。

所以我就像一个珊瑚生物学家。

必须有人下去
检查鲨鱼是否发出荧光。

我在那儿。

(笑声)

我当时想,“也许我应该
回到珊瑚礁。”

(笑声)

原来这些鲨鱼
不是荧光的。

然后我们找到了。

在加利福尼亚海岸附近的一个深邃黑暗的峡谷
中,

我们在所有冲浪者的下方发现了第一只
生物荧光巨鲨

这里是。

它们只有大约一米长。
它被称为巨鲨。

他们称它们为巨鲨,
因为如果它们受到威胁,

它们可以吞下水
并像内胎一样爆炸,

大约是它们的两倍大,

然后将自己楔入岩石下,
这样它们就不会被捕食者吃掉。

这是我们
对这些生物荧光巨鲨的第一个镜头。

太棒了——我的意思是,
它们显示出这些不同的图案

,有些区域是荧光的,有些
区域不是荧光的,

但它们上面也有这些
闪烁的斑点,

比鲨鱼的其他部分要亮得多 .

但这一切都很美。

我当时想,这太棒了。

但这对鲨鱼意味着什么?

他们能看到这个吗?

我们查阅了文献,

对这条鲨鱼的视力一无所知。

所以我把这条鲨鱼带到
康奈尔大学的眼科专家 Ellis Loew

那里,我们发现这条鲨鱼

在蓝绿色界面上的视觉离散而敏锐,

可能
比我们在黑暗中看到的要好 100 倍左右,

但它们只看到蓝色 -绿色。

所以它正在做的
是占领这个蓝色世界

,它正在吸收蓝色,
创造绿色。

它创造
了他们确实可以看到的对比。

所以我们有一个模型,

表明它创造了一种
让他们看到所有这些模式的能力。

我们发现,男性和女性之间
也有

不同的模式。

但我们的最后一个发现实际上
距离我们现在所在的地方只有几英里,

在所罗门群岛。

晚上游泳,遇到
了第一只生物荧光海龟。

所以现在它从鱼
和鲨鱼变成了爬行动物

,这又是一个月大,

但它告诉我们
,我们

对这只玳瑁的视力几乎一无所知。

这让我想到
还有多少东西要学。

而在所罗门群岛,

这个物种的繁殖雌性只剩下几千只

,这是它们的热点之一。

因此,它向我们展示了我们需要
在这些动物

还在这里的时候真正保护它们,
并了解它们。

在考虑生物荧光时,

我想知道它有多深?

这会一直
到海底吗?

所以我们开始使用潜艇
,我们在这里为它们的正面

配备了特殊的蓝光

我们下降了

,我们注意到一件重要的事情

——当我们下降到 1000 米时,

它下降了。 1000 米

以下没有生物荧光海洋
生物——

几乎什么也没有,只是一片黑暗。

所以这主要是一种肤浅的现象。

在 1000 米以下,

我们遇到了生物发光区,

那里有十分之九的
动物实际上在制造自己的灯

,闪烁和闪烁。

当我试图深入时,

这是在单人
潜水服上拍打——

有人称这是我的“雅克·库斯托
遇见伍迪·艾伦”的时刻。

(笑声)

但是当我们在这里探索的时候,

我在想:我们如何
微妙地与生活互动?

因为我们正在进入
一个新的探索时代

,我们必须非常小心

,我们必须树立
我们如何探索的榜样。

所以我和哈佛大学的机器人专家 Rob Wood 合作

,我们一直在设计
柔软的水下机器人手指,

这样我们就可以
与那里的海洋生物进行微妙的互动。

我们的想法是,我们
探索深海的大部分技术

都来自石油、天然气和军事

,你知道,他们并不真正
关心温柔。

有些珊瑚可能有 1000 年的历史。

你不想只是
去用大爪子压碎它们。

所以我的梦想是这样的。

晚上,我在潜艇里,

戴着力反馈手套

,可以
在潜艇前面巧妙地搭建一个实验室,柔软的

机器人手指在

里面小心翼翼地收集
东西,把东西放进罐子里

,我们可以进行 我们的研究。

回到强大的应用程序。

在这里,你看到的是一个活的大脑

,它使用
荧光海洋生物的 DNA,

这个来自水母和珊瑚的 DNA

,照亮活的大脑
并看到它的连接。

有趣的是,我们使用 RGB

只是为了满足
我们自己的直觉,

这样我们就可以更好地了解我们的大脑。

更令人兴奋的

是,我
在耶鲁大学的亲密同事文森特·皮里博恩 (Vincent Pieribone)

实际上设计并设计
了一种

对电压有反应的荧光蛋白。

所以他可以看到
单个神经元何时触发。

你本质上是在看
一个

由海洋生物设计的意识门户。

所以这让我回到
了观点和关系。

从深空看,

我们的宇宙看起来
像一个人类的脑细胞,

然后我们在深海中

,我们正在寻找

可以照亮人类思想的海洋生物和细胞。

我希望
,有了光明的头脑,

我们可以思考
所有生命的总体相互联系,

并了解

如果我们保持海洋健康,还有多少事情要做。

谢谢你。

(掌声)