How pollution is changing the oceans chemistry Triona McGrath

Do you ever think about how important
the oceans are in our daily lives?

The oceans cover two-thirds of our planet.

They provide half the oxygen we breathe.

They moderate our climate.

And they provide jobs
and medicine and food

including 20 percent of protein
to feed the entire world population.

People used to think
that the oceans were so vast

that they wouldn’t be affected
by human activities.

Well today I’m going to tell you
about a serious reality

that is changing our oceans
called ocean acidification,

or the evil twin of climate change.

Did you know that the oceans have absorbed
25 percent of all of the carbon dioxide

that we have emitted to the atmosphere?

Now this is just another great service
provided by the oceans

since carbon dioxide
is one of the greenhouse gases

that’s causing climate change.

But as we keep pumping
more and more and more

carbon dioxide into the atmosphere

more is dissolving into the oceans.

And this is what’s changing
our ocean chemistry.

When carbon dioxide dissolves in seawater,

it undergoes a number
of chemical reactions.

Now lucky for you,

I don’t have time to get into
the details of the chemistry for today.

But I’ll tell you as more
carbon dioxide enters the ocean,

the seawater pH goes down.

And this basically means that there
is an increase in ocean acidity.

And this whole process
is called ocean acidification.

And it’s happening
alongside climate change.

Scientists have been monitoring
ocean acidification for over two decades.

This figure is an important
time series in Hawaii,

and the top line shows steadily increasing
concentrations of carbon dioxide,

or CO2 gas, in the atmosphere.

And this is directly as a result
of human activities.

The line underneath shows the increasing
concentrations of carbon dioxide

that is dissolved
in the surface of the ocean

which you can see is increasing
at the same rate

as carbon dioxide in the atmosphere
since measurements began.

The line on the bottom shows
then shows the change in chemistry.

As more carbon dioxide
has entered the ocean,

the seawater pH has gone down,

which basically means there has been
an increase in ocean acidity.

Now in Ireland, scientists are also
monitoring ocean acidification –

scientists at the Marine
Institute and NUI Galway.

And we, too, are seeing
acidification at the same rate

as these main ocean time-series
sites around the world.

So it’s happening right at our doorstep.

Now I’d like to give you an example
of just how we collect our data

to monitor a changing ocean.

Firstly we collect a lot of our samples
in the middle of winter.

So as you can imagine,
in the North Atlantic

we get hit with some seriously
stormy conditions –

so not for any of you
who get a little motion sickness,

but we are collecting
some very valuable data.

So we lower this instrument
over the side of the ship,

and there are sensors
that are mounted on the bottom

that can tell us information about
the surrounding water,

such as temperature
or dissolved oxygen.

And then we can collect our seawater
samples in these large bottles.

So we start at the bottom,
which can be over four kilometers deep

just off our continental shelf,

and we take samples at regular intervals
right up to the surface.

We take the seawater back on the deck,

and then we can either
analyze them on the ship

or back in the laboratory
for the different chemicals parameters.

But why should we care?

How is ocean acidification
going to affect all of us?

Well, here are the worrying facts.

There has already been an increase
in ocean acidity of 26 percent

since pre-industrial times,
which is directly due to human activities.

Unless we can start slowing down
our carbon dioxide emissions,

we’re expecting an increase
in ocean acidity of 170 percent

by the end of this century.

I mean this is within
our children’s lifetime.

This rate of acidification
is 10 times faster

than any acidification in our oceans
for over 55 million years.

So our marine life have never,
ever experienced

such a fast rate of change before.

So we literally could not know
how they’re going to cope.

Now there was a natural acidification
event millions of years ago,

which was much slower
than what we’re seeing today.

And this coincided with a mass extinction
of many marine species.

So is that what we’re headed for?

Well, maybe.

Studies are showing
some species are actually doing quite well

but many are showing a negative response.

One of the big concerns is
as ocean acidity increases,

the concentration of carbonate
ions in seawater decrease.

Now these ions are basically
the building blocks

for many marine species
to make their shells,

for example crabs or mussels, oysters.

Another example are corals.

They also need these carbonate
ions in seawater

to make their coral structure
in order to build coral reefs.

As ocean acidity increases

and the concentration
of carbonate ions decrease,

these species first find it more difficult
to make their shells.

And at even even lower levels,
they can actually begin to dissolve.

This here is a pteropod,
it’s called a sea butterfly.

And it’s an important food source
in the ocean for many species,

from krill to salmon right up to whales.

The shell of the pteropod
was placed into seawater

at a pH that we’re expecting
by the end of this century.

After only 45 days
at this very realistic pH,

you can see the shell
has almost completely dissolved.

So ocean acidification could affect
right up through the food chain –

and right onto our dinner plates.

I mean who here
likes shellfish? Or salmon?

Or many other fish species

whose food source
in the ocean could be affected?

These are cold-water corals.

And did you know we actually have
cold-water corals in Irish waters,

just off our continental shelf?

And they support rich biodiversity,
including some very important fisheries.

It’s projected that
by the end of this century,

70 percent of all known cold-water corals
in the entire ocean

will be surrounded by seawater
that is dissolving their coral structure.

The last example I have
are these healthy tropical corals.

They were placed in seawater at a pH
we’re expecting by the year 2100.

After six months, the coral
has almost completely dissolved.

Now coral reefs support

25 percent of all marine life
in the entire ocean.

All marine life.

So you can see: ocean
acidification is a global threat.

I have an eight-month-old baby boy.

Unless we start now to slow this down,

I dread to think what our oceans
will look like when he’s a grown man.

We will see acidification.

We have already put too much
carbon dioxide into the atmosphere.

But we can slow this down.

We can prevent the worst-case scenario.

The only way of doing that

is by reducing our
carbon dioxide emissions.

This is important for both you and I,
for industry, for governments.

We need to work together,
slow down global warming

slow down ocean acidification

and help to maintain a healthy ocean
and a healthy planet

for our generation
and for generations to come.

(Applause)

你有没有想过
海洋在我们日常生活中的重要性?

海洋覆盖了我们星球的三分之二。

它们提供了我们呼吸的一半氧气。

它们调节我们的气候。

他们提供就业机会
、药品和食物,

包括 20% 的蛋白质
来养活全世界的人口。

人们过去认为
,海洋如此广阔

,不会
受到人类活动的影响。

那么今天我要告诉
你一个

正在改变我们海洋的严重现实,
称为海洋酸化,

或气候变化的邪恶双胞胎。

您是否知道海洋吸收

了我们排放到大气中的所有二氧化碳的 25%?

现在这只是海洋提供的另一项伟大服务

因为二氧化碳

是导致气候变化的温室气体之一。

但随着我们不断

向大气中注入越来越多的二氧化碳,越来越多的二氧化碳

正在溶解到海洋中。

这就是改变
我们海洋化学的原因。

当二氧化碳溶解在海水中时,

它会发生
许多化学反应。

现在你很幸运,

我今天没有时间深入
了解化学的细节。

但我会告诉你,随着更多
的二氧化碳进入海洋

,海水的 pH 值会下降。

这基本上意味着
海洋酸度增加。

而这整个过程
被称为海洋酸化。


与气候变化同时发生。 二十多年来,

科学家们一直在监测
海洋酸化。

该图
是夏威夷的一个重要时间序列

,最上面一行显示
大气中二氧化碳

或 CO2 气体的浓度稳步增加。

这直接
是人类活动的结果。

下面的线显示

了溶解
在海洋表面的二氧化碳浓度不断增加

,您可以看到,自测量开始以来,它的增加
速度

与大气中二氧化碳的增加速度相同

底部的线显示
然后显示化学变化。

随着更多的
二氧化碳进入海洋

,海水的pH值下降了,

这基本上意味着
海洋酸度增加了。

现在在爱尔兰,科学家们也在
监测海洋酸化——

海洋
研究所和 NUI Galway 的科学家。

我们也看到
了与世界各地

这些主要海洋时间序列
站点相同的酸化速度。

所以它就发生在我们家门口。

现在我想给你举个例子
,说明我们如何收集数据

来监测不断变化的海洋。

首先,我们在冬天收集了很多样品

所以你可以想象,
在北大西洋,

我们遇到了一些严重的
暴风雨天气——

所以对你们中的任何
一个有点晕车的人来说都不是,

但我们正在收集
一些非常有价值的数据。

所以我们把这个仪器
放在船的一边,

底部安装了传感器

,可以告诉我们
周围水的信息,

比如温度
或溶解氧。

然后我们可以
在这些大瓶子里收集我们的海水样本。

因此,我们从海底开始
,距离大陆架仅 4 公里多深

,我们会定期采集样本
直至地表。

我们将海水带回甲板上,

然后我们可以
在船上

或回到实验室分析它们
的不同化学参数。

但我们为什么要关心?

海洋酸化
将如何影响我们所有人?

好吧,这是令人担忧的事实。

自前工业时代以来
,海洋酸度已经增加了 26%


这直接归因于人类活动。

除非我们能够开始
减缓二氧化碳排放,否则

我们预计到本世纪末
海洋酸度将增加 170%

我的意思是这是在
我们孩子的一生中。

这种酸化速度

比我们
海洋超过 5500 万年的酸化速度快 10 倍。

因此,我们的海洋生物以前从未
经历过

如此快速的变化。

所以我们真的不
知道他们将如何应对。

现在有数百万年前的自然酸化
事件,

比我们今天看到的要慢得多。

这恰逢
许多海洋物种的大规模灭绝。

这就是我们的目标吗?

也许。

研究表明,
一些物种实际上表现良好,

但许多物种表现出负面反应。

最大的担忧之一是
随着海洋酸度的增加,海水

中碳酸
根离子的浓度会降低。

现在,这些离子基本上

许多海洋
物种制造贝壳的基石,

例如螃蟹或贻贝、牡蛎。

另一个例子是珊瑚。

它们还需要
海水中的这些碳酸根离子

来制造它们的珊瑚结构
,以建造珊瑚礁。

随着海洋酸度的增加


碳酸离子浓度的降低,

这些物种首先发现
它们的贝壳变得更加困难。

甚至在更低的层次上,
它们实际上可以开始溶解。

这是一种翼足类动物
,叫做海蝴蝶。


是海洋中许多物种的重要食物来源,

从磷虾到鲑鱼再到鲸鱼。

将翼足类动物的
外壳放入海水

中,其 pH 值达到我们预期
到本世纪末的水平。

在这个非常真实的 pH 值下仅 45 天后,

您可以看到
外壳几乎完全溶解。

因此,海洋酸化可能会
影响整个食物链——

甚至影响我们的餐盘。

我的意思是这里谁
喜欢贝类? 还是鲑鱼?

或者许多其他鱼类

的海洋食物来源
可能会受到影响?

这些是冷水珊瑚。

你知道我们
在爱尔兰海域实际上有冷水珊瑚,

就在我们的大陆架附近吗?

它们支持丰富的生物多样性,
包括一些非常重要的渔业。

预计
到本世纪末,整个海洋中

70% 的已知冷水珊瑚

将被
正在溶解其珊瑚结构的海水所包围。

我的最后一个例子
是这些健康的热带珊瑚。 到 2100 年,

它们被置于我们预计的 pH 值的海水中

六个月后,
珊瑚几乎完全溶解了。

现在珊瑚礁支撑着整个海洋中

25% 的海洋生物

所有海洋生物。

所以你可以看到:海洋
酸化是一个全球性的威胁。

我有一个八个月大的男婴。

除非我们现在开始放慢速度,否则

我不敢想象
他成年后我们的海洋会是什么样子。

我们会看到酸化。

我们已经将过多的
二氧化碳排放到大气中。

但我们可以放慢速度。

我们可以防止最坏的情况发生。

做到这一点的唯一方法

是减少我们
的二氧化碳排放量。

这对你我都很重要
,对工业界和政府来说都很重要。

我们需要共同努力,
减缓全球变暖,

减缓海洋酸化

,并为我们这一代和子孙后代维护一个健康的海洋
和一个健康的星球

(掌声)