The discoveries awaiting us in the oceans twilight zone Heidi M. Sosik

I bet all of you are familiar
with this view of the ocean,

but the thing is,

most of the ocean looks nothing like this.

Below the sunlit surface waters,

there’s an otherworldly realm

known as the twilight zone.

At 200 to 1,000 meters below the surface,

sunlight is barely a glimmer.

Tiny particles swirl down
through the darkness

while flashes of bioluminescence

give us a clue that
these waters teem with life:

microbes, plankton, fish.

Everything that lives here
has amazing adaptations

for the challenges
of such an extreme environment.

These animals help support
top predators such as whales, tuna,

swordfish and sharks.

There could be 10 times
more fish biomass here

than previously thought.

In fact, maybe more
than all the rest of the ocean combined.

There are countless
undiscovered species in deep waters,

and life in the twilight zone
is intertwined with earth’s climate.

Yet the twilight zone
is virtually unexplored.

There are so many things
we still don’t know about it.

I think we can change that.

I was drawn to oceanography
by just this kind of challenge.

To me it represents
the perfect intersection

of science, technology and the unknown,

the spark for so many breakthrough
discoveries about life on our planet.

As a college student,

I went on an expedition
across the Atlantic

with a team of scientists
using a high-powered laser

to measure microscopic algae.

The wild thing that happened on that trip

is that we discovered what everyone
who looked before had completely missed:

photosynthetic cells
smaller than anyone thought possible.

We now know those tiny cells
are the most abundant

photosynthetic organisms on earth.

This amazing discovery happened
because we used new technology

to see life in the ocean in a new way.

I am convinced that the discoveries
awaiting us in the twilight zone

will be just as breathtaking.

We know so little about the twilight zone
because it’s difficult to study.

It’s exceedingly large,

spanning from the Arctic
to the Southern Ocean

and around the globe.

It’s different from place to place.

It changes quickly
as the water and animals move.

And it’s deep and dark and cold,
and the pressures there are enormous.

What we do know is fascinating.

You may be imagining
huge monsters lurking in the deep sea,

but most of the animals are very small,

like this lantern fish.

And this fierce-looking fish
is called a bristlemouth.

Believe it or not, these are the most
abundant vertebrates on earth

and many are so small
that a dozen could fit in this one tube.

It gets even more interesting,

because small size does not stop them
from being powerful through sheer number.

Deep, penetrating sonar shows us
that the animals form dense layers.

You can see what I mean
by the red and yellow colors

around 400 meters in these data.

So much sound bounces off this layer,

it’s been mistaken for the ocean bottom.

But if we look, it can’t be,
because the layer is deep during the day,

it rises up at night

and the pattern repeats day after day.

This is actually the largest
animal migration on earth.

It happens around the globe every day,

sweeping through the world’s oceans
in a massive living wave

as twilight zone inhabitants
travel hundreds of meters

to surface waters to feed at night

and return to the relative safety
of deeper, darker waters during the day.

These animals and their movements
help connect the surface and deep ocean

in important ways.

The animals feed near the surface,

they bring carbon in their food
into the deep waters,

where some of that carbon can stay behind

and remain isolated from the atmosphere
for hundreds or even thousands of years.

In this way, the migration
may help keep carbon dioxide

out of our atmosphere

and limit the effects
of global warming on our climate.

But we still have many questions.

We don’t know which species are migrating,

what they’re finding to eat,

who is trying to eat them

or how much carbon
they are able to transport.

So I’m a scientist
who studies life in the ocean.

For me, curiosity about these things
is a powerful driver,

but there’s more to the motivation here.

We need to answer these questions
and answer them quickly,

because the twilight zone is under threat.

Factory ships in the open ocean

have been vacuuming up

hundreds of thousands of tons of small,
shrimp-like animals called krill.

The animals are ground into fish meal

to support increasing demands
for aquaculture

and for nutraceuticals such as krill oil.

Industry is on the brink
of deepening fisheries such as these

into the mid-water

in what could start
a kind of twilight zone gold rush

operating outside the reach
of national fishing regulations.

This could have irreversible
global-scale impacts

on marine life and food webs.

We need to get out
ahead of fishing impacts

and work to understand
this critical part of the ocean.

At Woods Hole Oceanographic Institution,

I’m really fortunate to be surrounded
by colleagues who share this passion.

Together, we are ready
to launch a large-scale exploration

of the twilight zone.

We have a plan to begin right away

with expeditions in the North Atlantic,

where we’ll tackle the big challenges

of observing and studying
the twilight zone’s remarkable diversity.

This kind of multiscale,
multidimensional exploration

means we need to integrate
new technologies.

Let me show you a recent example
that has changed our thinking.

Satellite tracking devices
on animals such as sharks

are now showing us that many top predators

regularly dive deep
into the twilight zone to feed.

And when we map their swimming patterns
and compare them to satellite data,

we find that their feeding hot spots

are linked to ocean currents
and other features.

We used to think these animals
found all of their food in surface waters.

We now believe they depend
on the twilight zone.

But we still need to figure out
how they find the best areas to feed,

what they’re eating there

and how much their diets depend
on twilight zone species.

We will also need new technologies
to explore the links with climate.

Remember these particles?

Some of them are produced
by gelatinous animals called salps.

Salps are like superefficient
vacuum cleaners,

slurping up plankton and producing
fast-sinking pellets of poop –

try saying that 10 times fast –

pellets of poop that carry carbon
deep into the ocean.

We sometimes find salps
in enormous swarms.

We need to know where
and when and why and whether

this kind of carbon sink
has a big impact on earth’s climate.

To meet these challenges, we will need
to push the limits of technology.

We will deploy cameras
and samplers on smart robots

to patrol the depths and help us track
the secret lives of animals like salps.

We will use advanced sonar

to figure out how many fish
and other animals are down there.

We will sequence DNA from the environment
in a kind of forensic analysis

to figure out which species are there

and what they are eating.

With so much that’s still
unknown about the twilight zone,

there’s an almost unlimited
opportunity for new discovery.

Just look at these beautiful,
fascinating creatures.

We barely know them.

And imagine how many more
are just down there waiting

for our new technologies to see them.

The excitement level about this
could not be higher on our team

of ocean scientists,
engineers and communicators.

There is also a deep sense of urgency.

We can’t turn back the clock
on decades of overfishing

in countless regions of the ocean

that once seemed inexhaustible.

How amazing would it be
to take a different path this time?

The twilight zone
is truly a global commons.

We need to first know and understand it

before we can be responsible stewards

and hope to fish it sustainably.

This is not just a journey for scientists,

it is for all of us,

because the decisions we collectively make

over the next decade

will affect what the ocean looks like

for centuries to come.

Thank you.

(Applause)

我敢打赌你们都
熟悉这种海洋景观,

但问题是,

大部分海洋看起来都不是这样的。

在阳光照射的地表水之下,

有一个超凡脱俗的领域,

被称为暮光区。

在地表以下 200 到 1,000 米处,

阳光几乎没有一丝微光。

微小的粒子
在黑暗中盘旋

而下,而闪烁的生物发光

为我们提供了
这些水域充满生命的线索:

微生物、浮游生物、鱼类。

生活在这里的一切都

对这种极端环境的挑战有着惊人的适应性。

这些动物有助于支持
顶级捕食者,如鲸鱼、金枪鱼、

箭鱼和鲨鱼。

这里的
鱼类生物量可能

比以前想象的多 10 倍。

事实上,也许
比海洋其他部分的总和还要多。

深水中有无数未被发现的物种,

暮光区的生命
与地球的气候交织在一起。

然而,暮光
地带几乎没有被探索过。

有很多事情
我们仍然不知道。

我认为我们可以改变这一点。

正是这种挑战吸引了我对海洋学的兴趣

对我来说,它代表

了科学、技术和未知的完美交汇点,


我们星球上许多关于生命的突破性发现的火花。

作为一名大学生,

我与一组科学家一起进行了一次
横跨大西洋的探险,他们

使用高能

激光测量了微型藻类。

在那次旅行中发生的疯狂事情

是,我们发现了以前每个
人都完全错过的东西:

光合细胞
比任何人想象的都要小。

我们现在知道这些微小的细胞
是地球上最丰富的

光合生物。

这个惊人的发现之所以发生,
是因为我们使用新技术

以一种新的方式看待海洋中的生命。

我相信,
在暮光地带等待我们的发现

将同样令人叹为观止。

我们对暮光区知之甚少,
因为它很难研究。

它非常大,

从北极
到南大洋

,遍布全球。

它因地而异。


随着水和动物的移动而迅速变化。

它又深又暗又冷,
那里的压力是巨大的。

我们所知道的令人着迷。

你可能会想象
潜伏在深海中的巨大怪物,

但大多数动物都很小,

比如这条灯笼鱼。

而这种看起来凶猛的鱼
被称为猪鬃鱼。

信不信由你,这些是
地球上最丰富的脊椎动物

,其中许多是如此之小
,以至于一个管子里可以装一打。

它变得更加有趣,

因为小尺寸并不能阻止它们
通过绝对数量变得强大。

深而透彻的声纳向我们
展示了这些动物形成了致密的层。

您可以在这些数据中看到我所说的 400 米左右
的红色和黄色是什么意思

如此多的声音从这一层反弹,

它被误认为是海底。

但是如果我们看,它不可能,
因为白天层很深

,晚上它会升起

,图案日复一日地重复。

这实际上是
地球上最大的动物迁徙。

它每天都在全球范围内发生,

随着暮光区的居民
前往数百米

的地表水域觅食,

并在白天返回到相对安全
的更深、更黑的水域,它以巨大的生命浪潮席卷世界海洋。

这些动物及其运动
有助于

以重要的方式连接表层和深海。

这些动物在地表附近觅食,

它们将食物中的碳带
入深水区,

其中一些碳可以留在深水中

并与大气隔离
数百年甚至数千年。

通过这种方式,迁移
可能有助于将二氧化碳

排除在我们的大气之外,

并限制
全球变暖对我们气候的影响。

但是我们还有很多问题。

我们不知道哪些物种正在迁徙,

它们发现了什么可以吃,

谁在试图吃掉它们,

或者
它们能够运输多少碳。

所以我是
一个研究海洋生命的科学家。

对我来说,对这些事情的好奇心
是一个强大的驱动力,

但这里还有更多的动力。

我们需要快速回答这些问题

因为暮光地带正受到威胁。

公海中的工厂船

一直在用吸尘器吸走

数十万吨
称为磷虾的类似虾的小型动物。

这些动物被磨成鱼粉,

以支持
对水产养殖

和磷虾油等营养品日益增长的需求。

工业正处于
将诸如此类的渔业深化

到中层水域

的边缘,这可能会
引发一种在国家渔业法规范围之外运作的“暮光区”淘金热

这可能

对海洋生物和食物网产生不可逆转的全球规模影响。

我们需要在
捕鱼影响之前走出去,

并努力了解
海洋的这一关键部分。

在伍兹霍尔海洋研究所,

我真的很幸运能被
分享这种热情的同事所包围。

一起,我们
准备展开

对暮光地带的大规模探索。

我们计划立即开始

在北大西洋进行探险,

在那里我们将应对

观察和
研究暮光区非凡多样性的巨大挑战。

这种多尺度、
多维度的探索,

意味着我们需要整合
新技术。

让我向您展示一个
最近改变我们想法的例子。

鲨鱼等动物的卫星跟踪设备

现在向我们展示了许多顶级捕食者

经常
潜入暮光区觅食。

当我们绘制它们的游泳模式
并将它们与卫星数据进行比较时,

我们发现它们的觅食

热点与洋流
和其他特征有关。

我们曾经认为这些动物
在地表水中找到了所有的食物。

我们现在相信它们依赖
于暮光区。

但是我们仍然需要
弄清楚它们是如何找到最好的觅食区域的,

它们在那里吃什么,以及它们的饮食在

多大程度上依赖
于暮光区的物种。

我们还需要新技术
来探索与气候的联系。

还记得这些粒子吗?

其中一些是
由称为salps的凝胶状动物生产的。

盐沼就像超高效的
真空吸尘器,

吸食浮游生物并产生
快速下沉的粪便颗粒

——试着说它快 10 倍——

将碳带
入海洋深处的粪便颗粒。

我们有时会发现成群结队的鲑鱼

我们需要知道这种碳汇在
何时何地以及为什么以及

这种碳汇
是否会对地球气候产生重大影响。

为了应对这些挑战,我们
需要突破技术的极限。

我们将
在智能机器人上部署摄像头和采样器,

在深处巡逻,帮助我们追踪
鲑鱼等动物的秘密生活。

我们将使用高级声纳

来确定那里有多少鱼
和其他动物。

我们将在一种法医分析中对环境中的 DNA 进行测序,

以确定那里有哪些物种

以及它们在吃什么。

关于暮光地带还有很多未知的东西,新发现

的机会几乎是无限的

看看这些美丽
迷人的生物。

我们几乎不认识他们。

想象一下还有多少
人在那里

等待我们的新技术看到它们。

我们

的海洋科学家、
工程师和传播者团队对此感到无比兴奋。

还有一种深深的紧迫感。

在曾经看似取之不尽用之不竭的海洋无数地区,几十年来的过度捕捞,我们无法让时光倒流

这一次走不同的路该有多神奇?

暮光地带
是真正的全球公地。

我们需要先了解和理解它,

然后才能成为负责任的管家

并希望可持续地捕捞它。

这不仅仅是科学家的旅程

,也是我们所有人的旅程,

因为我们在未来十年共同做出的决定

将影响未来几个世纪海洋的面貌

谢谢你。

(掌声)