What ocean microbes reveal about the changing climate Angelicque White

Translator: Joseph Geni
Reviewer: Krystian Aparta

I’m a biological oceanographer.

I have the absolute privilege
of studying microbial lives

in the Pacific Ocean.

So we’ll talk about microbes in a minute,

but I first want to give you
a sense of place,

a sense of scale.

The Pacific Ocean is our largest,
deepest ocean basin.

It covers 60 million square miles.

If you took all the continents
and you put them together

in a little Pangaea 2.0,

they’d fit snug inside the Pacific,
with room to spare.

It’s a massive ecosystem,

from the blues of the open ocean
to the green of the continental margins.

In this place,

I get to study the base of the food web:

plankton.

Now, in my research,

and really in the field
of microbial oceanography as a whole,

there’s a theme that has emerged,

and that theme is “change.”

These microbial ecosystems
are changing in real and measurable ways,

and it is not that hard to see it.

Oceans cover 70 percent of our planet,

so ocean change is planetary change,

and it all starts with microbes.

Now, I have two vignettes
to share with you,

and these are meant to be
love stories to microbes.

But I’ll be honest
that there’s an aspect of it

that’s just a total bummer,

and, beware, focus on the love.

Right? That’s where I’m coming from.

So the first thing to know

is that the forests
of the sea are microbial.

And what I mean by that
is that, by and large,

plants in the open ocean are microscopic,

and they are much more abundant
than we realize.

So I’m going to show you
some mug shots of these organisms

that I’ve collected over the years.

These are the lowest rungs
of the ocean food web.

These are tiny plants and animals

that come in a variety of shapes
and sizes and colors and metabolisms.

There are hundreds of thousands
in a single milliliter of seawater.

You are definitely swimming with them
when you’re in the ocean.

They produce oxygen, they consume CO2,

and they form the base of the food web

on which every other form
of ocean life is reliant.

Now, I’ve spent about 500 days
of my scientific life at sea,

and a lot more in front
of a computer or in the lab,

so I feel compelled to tell you
some of their stories.

Let’s start in the Pacific Northwest.

This place is green. It is beautiful.

These are blooms of phytoplankton
that you can see from space

along the West Coast of the United States.

It’s an incredibly productive ecosystem.

This is where you go to salmon fish,
halibut fish, whale watch.

It’s a beautiful part of our country.

And here, for 10 years,
among other things,

I studied the uplifting topic
of harmful algal blooms.

These are blooms
of toxin-producing phytoplankton

that can contaminate food webs
and accumulate in shellfish and fish

that are harvested for human consumption.

We were trying to understand
why they bloom, where they bloom,

when they bloom,

so we could manage these harvests

and protect human health.

Now, the problem
is the ocean’s a moving target

and, much like some people in our lives,
toxicity varies among the plankton.

(Laughter)

Alright?

So, to get around these challenges,

we combined satellite remote sensing

with drones and gliders,

regular sampling of the surf zone

and a lot of time at sea

in small boats off the Oregon coast.

And I don’t know if many of you
have had the opportunity to do that,

but it is not easy.

[Even oceanographers get seasick]

Here’s some poor students.

(Laughter)

I’ve hidden their faces
to protect their identities.

(Laughter)

This is a challenging place.

So this is hard-won data
I’m about to talk about, OK?

(Laughter)

So by combining all of our data
with our collaborators,

we had 20-year time series
of toxins and phytoplankton cell counts.

And that allowed us to understand
the patterns of these blooms

and to build models to predict them.

And what we found

was that the risk of harmful algal blooms
was tightly linked to aspects of climate.

Now when I say “climate,”
I don’t mean weather day-to-day,

I mean long-term changes.

These oscillations
that you may have heard of –

the Pacific Decadal
Oscillation, El Niño –

they usually bring warm,
dry winters to this region,

but they also reduce the strength
of the California Current,

which runs from the north to the south
along the Pacific Northwest,

and they warm the coastal ocean.

These are the reds
you’re seeing in this plot,

warm anomalies,

strong positive indices of the PDO.

And when we have
these changes in circulation

and changes in temperature,

the risk of harmful
algal blooms is increased,

but also salmon recruitment has decreased,

and we see intrusions
of invasive species like green crab.

So these are ecological
and economic impacts of climate.

Now, if our models are right,

the frequency and severity of these events
are only going to get worse,

right along with these warm anomalies.

And, to illustrate that,

2014 was probably one of the worst
harmful algal blooms in Oregon history.

It was also the hottest year
in the modern climate record at that time,

that is until 2015,

2016,

2017, 2018.

In fact, the five hottest years
in the modern climate record

have been the last five.

That bodes really well
for harmful algal blooms

and poorly for ecosystem health.

Now, you may not care about shellfish,

but these changes impact
economically important fisheries,

like crab and salmon,

and they can impact the health
of marine mammals like whales.

And that might matter a little bit more.

That might resonate.

So, there’s your doomsday tale
for the margins of the Pacific.

Actually, these are really
resilient ecosystems.

They can absolutely bounce back
if we give them a chance.

The point is not to ignore
the changes that we’re seeing,

which brings me to my second vignette.

I have since moved to the most remote
island chain on our planet,

the Hawaiian Islands,

where I’m the new lead of a program
called the Hawaiian Ocean Time-series.

And this is a program that for 31 years

has made this monthly pilgrimage
to a spot called Station ALOHA.

It’s in the middle of the Pacific Ocean,

in the center of this vast,
swirling system of currents

that we call the North Pacific
Subtropical Gyre.

It’s our largest ocean ecosystem.

It’s four times the size
of the Amazon rain forest.

It is warm, in a good way.

It is blue water,

it’s absolutely the type of place
you want to dive in and swim.

You cannot do that off of research boats,

because, you know, sharks. Google it.

(Laughter)

This is a beautiful place.

And here, since October of 1988,

generations of researchers
have made these monthly pilgrimages.

We study the biology, the chemistry,
the physics of the open ocean.

We’ve measured the temperature
from the surface to the seafloor.

We’ve tracked the currents,
traced the waves.

People have discovered new organisms here.

People have created vast genomic libraries

that have revolutionized

what we think about the diversity
of marine microorganisms.

It’s not just a place of discovery,

but the important part about time series

are that they provide us
a sense of history,

a sense of context.

And in 30 years of data,

it’s allowed us to separate
the seasonal change

and see the emergence
of humanity’s fingerprints

on the natural world.

There’s another iconic
time series in Hawaii,

and that is the Keeling Curve.

I hope you have all seen this.

This time series has documented
the rapid increase in carbon dioxide

in the atmosphere.

It’s not just the number,
it’s the rate of increase.

The rate of carbon dioxide
increase in our atmosphere

is unprecedented for our planet.

And that has consequences for our oceans.

In fact, oceans absorb about 90 percent
of the heat that’s generated

by greenhouse gas emissions

and about 40 percent
of the carbon dioxide.

And we have been able
to measure that at Station ALOHA.

Each one of these dots is a cruise.

It represents people’s lives over 30 years
trying to make these measurements,

and it took 30 years
to be able to see this.

CO2 rises in the atmosphere,

CO2 rises in the ocean.

That’s the red line.

A consequence of that

is a fundamental change
in the chemistry of seawater,

a decline in pH –

pH is on a log scale,

here’s your blue line.

So we’ve seen a 30 percent decline
in pH in the surface ocean

in this time series.

Now that has impacts for organisms
that need to feed, build shells,

that changes growth rates,
metabolic interactions,

and it doesn’t just impact plankton –

it impacts ecosystems
as large as coral reefs.

Now one of the things we’ve been able
to show in this time series

is this is just skimming the surface.

Increases in CO2 and a decline in pH

are measured over the top 500 meters
of the water column.

I really find that to be profound.

This is genuinely one of the most
remote places on our planet,

and we’ve impacted the top 500 meters
of the water column.

Now, these two things –

harmful algal blooms,
ocean acidification –

that’s not all, of course.

You’ve heard of the rest:

sea-level rise, eutrophication,
melting of the polar ice caps,

expansion of oxygen minimum zones,
pollution, loss of biodiversity,

overfishing.

It’s hard for me to get a grad student –

you can see this pitch
is a difficult one, right?

(Laughter)

(Sighs)

Again, I think these systems,
these microbial ecosystems,

are immensely resilient.

We just cannot go too far down this path.

I personally believe that sustained
observation of our oceans and our planet

is the moral imperative
for our generation of scientists.

We are bearing witness

to the changes that are being inflicted
upon our natural communities,

and by doing so,

it provides us the opportunity
to adapt and enact global change,

if we’re willing.

So the solutions to these problems
are multitiered.

It involves a portfolio of solutions,

local change,

but all the way up to voting for people
who will protect our environment

on a global scale.

(Applause)

Let’s bring it back to the love.

(Laughter)

Microbes matter.

These organisms are small,

abundant, ancient,

and they are critical to sustaining
our population and our planet.

Yet we are on track to double
our carbon dioxide emissions

in the next 50 years,

so the analogy that I use for that

is like we are eating
like we’re still in our 20s,

assuming there will be no consequences –

but I’m a woman in her 40s,

I know there are consequences
for my fuel consumption. Right?

(Laughter)

These oceans are very much alive.

These ecosystems have not collapsed.

Well, except for the Arctic,
we can talk about that.

(Laughter)

But the sustained observations
that I’ve shared with you today,

the work of generations of scientists,

are pointing us to take
better care of our oceans

and to nurture the microbes
that sustain us.

And on that note,

I want to end with a quote
from one of my heroes,

Jane Lubchenco.

And this slide is appropriate.

Jane has said that the oceans
are not too big to fail,

nor are they too big to fix,

but the oceans are too big to ignore.

Thank you.

(Applause)

译者:Joseph Geni
审稿人:Krystian Aparta

我是一名生物海洋学家。

我拥有
研究太平洋微生物生命

的绝对特权。

所以我们稍后会讨论微生物,

但我首先想给你
一种地方感,

一种规模感。

太平洋是我们最大、
最深的海洋盆地。

它占地6000万平方英里。

如果你把所有的
大陆都放在一起,把它们

放在一个小小的 Pangea 2.0 中,

它们就可以在太平洋内舒适地放置,
并留有余地。

这是一个庞大的生态系统,

从蓝色的开阔海洋
到绿色的大陆边缘。

在这个地方,

我开始研究食物网的基础:

浮游生物。

现在,在我的研究中

,实际上在
整个微生物海洋学领域,

出现了一个主题

,这个主题就是“变化”。

这些微生物生态系统
正在以真实且可衡量的方式发生变化

,这并不难看出。

海洋覆盖了地球 70% 的面积,

因此海洋变化就是行星变化,

而这一切都始于微生物。

现在,我有两个小插曲
要和你分享

,它们是
微生物的爱情故事。

但老实说
,它有一个方面

完全令人失望,

而且,当心,专注于爱。

对? 我就是从那里来的。

所以首先要知道的

是,海洋中的森林
是微生物的。

我的意思
是,总的来说,

公海中的植物是微观的

,它们
比我们意识到的要丰富得多。

因此,我将向您展示我多年来收集
的这些生物的照片

这些
是海洋食物网的最低层。

这些是微小的植物和动物

,有各种形状
、大小、颜色和新陈代谢。

一毫升海水中有数十万个。

当你在海里时,你肯定是在和他们一起游泳。

它们产生氧气,消耗二氧化碳

,它们构成了食物网的

基础,所有其他形式
的海洋生物都赖以生存。

现在,我已经在海上度过了大约 500 天
的科学生活,

而且更多的时间
是在电脑前或实验室里度过的,

所以我不得不告诉你
他们的一些故事。

让我们从太平洋西北部开始。

这个地方是绿色的。 它很美。

这些是浮游植物的花朵
,你可以从

美国西海岸的太空中看到。

这是一个令人难以置信的高效生态系统。

这是你去鲑
鱼、大比目鱼、观鲸的地方。

这是我们国家美丽的一部分。

在这里,10 年来,
除其他外,

我研究了有害藻华这个令人振奋的话题

这些是大量
产生毒素的浮游植物

,它们会污染食物网
并积聚在

供人类食用的贝类和鱼类中。

我们试图了解
它们为何开花、在何处开花、

何时开花,

以便我们能够管理这些收成

并保护人类健康。

现在,问题
是海洋是一个移动的目标

,就像我们生活中的某些人一样,
浮游生物的毒性也各不相同。

(笑声)

好吗?

因此,为了解决这些挑战,

我们将卫星遥感

与无人机和滑翔机相结合,

定期对冲浪区进行采样,

在俄勒冈海岸附近的小船上进行大量海上航行。

我不知道你们中的许多
人是否有机会这样做,

但这并不容易。

【连海洋学家都晕船】

这里有一些穷学生。

(笑声)

我隐藏了他们的脸
以保护他们的身份。

(笑声)

这是一个充满挑战的地方。

所以这是
我要谈论的来之不易的数据,好吗?

(笑声)

因此,通过将我们所有的数据
与我们的合作者结合起来,

我们得到了 20 年时间序列
的毒素和浮游植物细胞计数。

这使我们能够了解
这些花朵的模式

并建立模型来预测它们。

我们

发现,有害藻华的风险
与气候方面密切相关。

现在,当我说“气候”时,
我不是指每天的天气,

而是指长期的变化。

这些你可能听说过的振荡

——太平洋年代际
振荡,厄尔尼诺现象——

它们通常给这个地区带来温暖、
干燥的冬天,

但它们也降低
了加州洋流的强度,加州

洋流从北到南
沿着 太平洋西北部

,它们使沿海海洋变暖。

这些是
你在这个图中看到的红色,

温暖的异常,

PDO 的强正指数。

当我们有
这些

循环变化和温度变化时,

有害
藻类大量繁殖的风险就会增加,

但鲑鱼的招募也会减少

,我们会看到
绿蟹等入侵物种的入侵。

所以这些
是气候的生态和经济影响。

现在,如果我们的模型是正确的,

那么这些事件的频率和严重性
只会变得更糟

,以及这些温暖的异常现象。

而且,为了说明这一点,

2014 年可能是
俄勒冈州历史上最严重的有害藻华之一。

这也是
当时现代气候记录中最热的一年,

也就是直到2015年、

2016年、

2017年、2018

年。事实上,
现代气候记录

中最热的五年是最近五年。

这预示
着有害藻类大量繁殖的好兆头,

而对生态系统健康不利。

现在,您可能不关心贝类,

但这些变化会影响
经济上重要的渔业,

如螃蟹和鲑鱼

,它们会影响
鲸鱼等海洋哺乳动物的健康。

这可能更重要一点。

这可能会引起共鸣。

所以,这就是
太平洋边缘的世界末日故事。

实际上,这些都是真正有
弹性的生态系统。

如果我们给他们一个机会,他们绝对可以反弹。

关键是不要忽视
我们所看到的变化,

这让我想到了我的第二个小插曲。

从那以后,我搬到了
我们星球上最偏远的岛链

,夏威夷群岛,

在那里我是一个名为夏威夷海洋时间序列的项目的新负责人

这是一个 31

年来每个月都
在一个名为“Station ALOHA”的地方朝圣的节目。

它位于太平洋中部,

位于

我们称之为北太平洋
副热带环流的巨大漩涡系统的中心。

这是我们最大的海洋生态系统。

它的面积
是亚马逊雨林的四倍。

它很温暖,以一种很好的方式。

它是蓝色的水

,绝对是
您想潜水和游泳的地方。

你不能在研究船上做到这一点,

因为,你知道,鲨鱼。 去谷歌上查询。

(笑声)

这是一个美丽的地方。

在这里,自 1988 年 10 月以来,

一代又一代的研究
人员进行了每月一次的朝圣之旅。

我们研究公海的生物学、化学
和物理学。

我们测量了
从地表到海底的温度。

我们追踪了水流,
追踪了波浪。

人们在这里发现了新的生物。

人们创建了庞大的基因组库

,彻底改变

了我们
对海洋微生物多样性的看法。

它不仅仅是一个发现的地方,

而且时间序列的重要部分

是它们为我们提供了
一种历史感,

一种背景感。

而在 30 年的数据中,

它让我们能够区分
季节变化,

并看到
人类

在自然界中出现的指纹。 夏威夷

还有另一个标志性的
时间序列

,那就是基林曲线。

我希望你们都看到了这一点。

这个时间序列记录
了大气中二氧化碳的迅速增加

这不仅仅是数字,
而是增长率。

我们大气中二氧化碳的增加速度

对我们的星球来说是前所未有的。

这对我们的海洋产生了影响。

事实上,海洋吸收了温室气体排放产生的约 90%
的热量

和约 40%
的二氧化碳。

我们已经
能够在 ALOHA 站进行测量。

这些点中的每一个都是一次巡航。

它代表了人们 30 多年来
试图进行这些测量的生活,

而能够看到这一点花了 30 年
的时间。

二氧化碳在大气中上升,

二氧化碳在海洋中上升。

那是红线。

其结果

是海水化学性质发生根本性变化

,pH 值下降——pH

值是对数刻度,

这是你的蓝线。

因此,在这个时间序列中,我们已经看到
表层海洋的 pH 值下降了 30%

现在,这对
需要喂养、建造贝壳

、改变生长速度、
代谢相互作用的生物产生了影响,

而且它不仅影响浮游生物——

它还影响
像珊瑚礁一样大的生态系统。

现在我们能够
在这个时间序列中展示的一件事

就是这只是表面上的。

在水柱顶部 500 米处测量到 CO2 的增加和 pH 值的下降

我真的觉得这很深刻。

这确实是
我们星球上最偏远的地方之一

,我们已经影响了水柱的顶部 500
米。

现在,这两件事——

有害的藻类大量繁殖、
海洋酸化——

当然,这还不是全部。

你听说过其他的:

海平面上升、富营养化、
极地冰盖融化、

氧气最低区扩大、
污染、生物多样性丧失、

过度捕捞。

找个研究生对我来说很难——

你可以看到这个推销
很困难,对吧?

(笑声)

(叹气

)我再次认为这些系统,
这些微生物生态系统,

是非常有弹性的。

我们不能在这条路上走得太远。

我个人认为,持续
观察我们的海洋和地球


我们这一代科学家的道德责任。

我们正在见证

正在
对我们的自然社区造成的变化,

并且通过这样做,

它为我们提供
了适应和实施全球变化的机会,

如果我们愿意的话。

因此,这些问题的解决方案
是多层次的。

它涉及一系列解决方案、

本地变革,

但一直到投票选出
将在全球范围内保护我们环境的人

(掌声)

让我们把它带回到爱上。

(笑声)

微生物很重要。

这些生物体小、

丰富、古老

,它们对于维持
我们的人口和地球至关重要。

然而,我们有望在未来 50 年内将
我们的二氧化碳排放量翻一番

所以我使用的类比

就像我们还在 20 多岁时吃东西,

假设不会有任何后果——

但我 我是 40 多岁的女性,

我知道
我的油耗会受到影响。 对?

(笑声)

这些海洋非常活跃。

这些生态系统并没有崩溃。

好吧,除了北极,
我们可以谈谈。

(笑声)

但是
我今天与你们分享的持续观察,

几代科学家的工作,

都在指出我们要
更好地保护我们的海洋

,培育
维持我们生命的微生物。

关于这一点,

我想引用
我的一位英雄

Jane Lubchenco 的话作为结尾。

这张幻灯片是合适的。

简说过,海洋
不是太大而不能倒,

也不是太大而无法修复,

但海洋太大而不能忽视。

谢谢你。

(掌声)