Whats hidden under the Greenland ice sheet Kristin Poinar

When was I was 21 years old,

I had all this physics homework.

Physics homework requires taking breaks,

and Wikipedia was relatively new,
so I took a lot of breaks there.

I kept going back to the same articles,

reading them again and again,

on glaciers, Antarctica and Greenland.

How cool would it be to visit these places

and what would it take to do so?

Well, here we are

on a repurposed Air Force cargo plane

operated by NASA

flying over the Greenland ice sheet.

There’s a lot to see here,

but there’s more that is hidden,

waiting to be uncovered.

What the Wikipedia articles didn’t tell me

is that there’s liquid water
hidden inside the ice sheet,

because we didn’t know that yet.

I did learn on Wikipedia
that the Greenland ice sheet is huge,

the size of Mexico,

and its ice from top to bottom
is two miles thick.

But it’s not just static.

The ice flows like a river
downhill towards the ocean.

As it flows around bends,

it deforms and cracks.

I get to study these amazing ice dynamics,

which are located in one of the most
remote physical environments

remaining on earth.

To work in glaciology right now
is like getting in on the ground floor

at Facebook in the 2000s.

(Laughter)

Our capability to fly airplanes
and satellites over the ice sheets

is revolutionizing glaciology.

It’s just starting to do for science

what the smartphone
has done for social media.

The satellites are reporting
a wealth of observations

that are revealing new hidden facts
about the ice sheets continuously.

For instance, we have observations
of the size of the Greenland ice sheet

every month going back to 2002.

You can look towards the bottom
of the screen here

to see the month and the year go forward.

You can see that some areas
of the ice sheet melt

or lose ice in the summer.

Other areas experience snowfall

or gain ice back in the winter.

This seasonal cycle, though, is eclipsed
by an overall rate of mass loss

that would have stunned
a glaciologist 50 years ago.

We never thought that an ice sheet could
lose mass into the ocean this quickly.

Since these measurements began in 2002,

the ice sheet has lost so much ice

that if that water were piled up
on our smallest continent,

it would drown Australia knee-deep.

How is this possible?

Well, under the ice lies the bedrock.

We used radar to image the hills,
valleys, mountains and depressions

that the ice flows over.

Hidden under the ice sheet are channels
the size of the Grand Canyon

that funnel ice and water
off of Greenland and into the ocean.

The reason that radar
can reveal the bedrock

is that ice is entirely
transparent to radar.

You can do an experiment.

Go home and put
an ice cube in the microwave.

It won’t melt,

because microwaves, or radar,

pass straight through the ice
without interacting.

If you want to melt your ice cube,
you have to get it wet,

because water heats up easily
in the microwave.

That’s the whole principle
the microwave oven is designed around.

Radar can see water.

And radar has revealed
a vast pool of liquid water

hidden under my colleague Olivia,

seven stories beneath her feet.

Here, she’s used a pump

to bring some of that water
back to the ice sheet’s surface.

Just six years ago, we had no idea
this glacier aquifer existed.

The aquifer formed

when snow melts in the summer sun

and trickles downward.

It puddles up in huge pools.

From there, the snow acts as an igloo,

insulating this water
from the cold and the wind above.

So the water can stay
hidden in the ice sheet

in liquid form year after year.

The question is, what happens next?

Does the water stay there forever?

It could.

Or does it find a way out
to reach the global ocean?

One possible way
for the water to reach the bedrock

and from there the ocean

is a crevasse, or a crack in the ice.

When cracks fill with water,

the weight of the water
forces them deeper and deeper.

This is how fracking works

to extract natural gas
from deep within the earth.

Pressurized fluids fracture rocks.

All it takes is a crack to get started.

Well, we recently discovered

that there are cracks available
in the Greenland ice sheet

near this glacier aquifer.

You can fly over
most of the Greenland ice sheet

and see nothing,

no cracks, no features on the surface,

but as this helicopter
flies towards the coast,

the path that water would take
on its quest to flow downhill,

one crack appears,

then another and another.

Are these cracks filled with liquid water?

And if so, how deep
do they take that water?

Can they take it to the bedrock

and the ocean?

To answer these questions,

we need something
beyond remote sensing data.

We need numeric models.

I write numeric models
that run on supercomputers.

A numeric model
is simply a set of equations

that works together to describe something.

It can be as simple
as the next number in a sequence –

one, three, five, seven –

or it can be a more complex
set of equations

that predict the future

based on known conditions in the present.

In our case, what are
the equations for how ice cracks?

Well, engineers already have
a very good understanding

of how aluminum, steel and plastics
fracture under stress.

It’s an important problem in our society.

And it turns out
that the engineering equations

for how materials fracture

are not that different
from my physics homework.

So I borrowed them, adapted them for ice,

and then I had a numeric model
for how a crevasse can fracture

when filled with water from the aquifer.

This is the power of math.

It can help us understand
real processes in our world.

I’ll show you now
the results of my numeric model,

but first I should point out

that the crevasse is about
a thousand times narrower than it is deep,

so in the main panel here,

we’ve zoomed in to better see the details.

You can look to the smaller
panel on the right

to see the true scale
for how tall and skinny the crevasse is.

As the aquifer water
flows into the crevasse,

some of it refreezes
in the negative 15 degree Celsius ice.

That’s about as cold
as your kitchen freezer.

But this loss can be overcome

if the flow rate in from
the glacier aquifer is high enough.

In our case, it is,

and the aquifer water drives the crevasse
all the way to the base of the ice sheet

a thousand meters below.

From there, it has a clear path
to reach the ocean.

So the aquifer water is a part

of the three millimeters
per year of sea level rise

that we experience as a global society.

But there’s more:

the aquifer water
might be punching above its weight.

The ice flows in complex ways.

In some places, the ice flows very fast.

There tends to be water
at the base of the ice sheet here.

In other places, not so fast.

Usually, there’s not water
present at the base there.

Now that we know the aquifer water
is getting to the base of the ice sheet,

the next question is:

Is it making the ice itself
flow faster into the ocean?

We’re trying to uncover these mysteries
hidden inside the Greenland ice sheet

so that we can better plan
for the sea level rise it holds.

The amount of ice
that Greenland has lost since 2002

is just a small fraction
of what that ice sheet holds.

Ice sheets are immense, powerful machines
that operate on long timescales.

In the next 80 years, global sea levels
will rise at least 20 centimeters,

perhaps as much as one meter,

and maybe more.

Our understanding
of future sea level rise is good,

but our projections have a wide range.

It’s our role as glaciologists
and scientists

to narrow these uncertainties.

How much sea level rise is coming,

and how fast will it get here?

We need to know how much and how fast,

so the world and its communities can
plan for the sea level rise that’s coming.

Thank you.

(Applause)

当我 21 岁时,

我完成了所有这些物理作业。

物理作业需要休息,

而维基百科相对较新,
所以我在那里休息了很多。

我不断地回到相同的文章,

一遍又一遍地阅读它们,

关于冰川、南极洲和格陵兰岛。

参观这些地方有多酷

?这样做需要什么?

好吧,我们现在

乘坐的是由美国宇航局运营的一架改装过的空军货机

飞越格陵兰冰盖。

这里有很多可看的东西,

但还有更多隐藏的东西,

等待被发现。

维基百科的文章没有告诉我

冰盖内隐藏着液态水,

因为我们还不知道。

我确实在维基百科上
了解到格陵兰冰盖很大

,有墨西哥那么大

,它的冰从上到下
有两英里厚。

但这不仅仅是静态的。

冰像河流一样
向下流向海洋。

当它绕弯流动时,

它会变形和破裂。

我开始研究这些惊人的冰动力学,

它们位于地球上最
偏远的物理环境之一

现在从事冰川学工作
就像

在 2000 年代进入 Facebook 的底层。

(笑声)

我们的飞机
和卫星飞越冰盖的能力

正在彻底改变冰川学。

它刚刚开始为科学

做智能手机
为社交媒体所做的事情。

卫星正在
报告大量的观测结果

,这些观测结果不断揭示
有关冰盖的新隐藏事实。

例如,自 2002 年以来,我们每个月都会观察
格陵兰冰盖的大小

您可以
在此处查看屏幕底部

以查看未来的月份和年份。

您可以看到冰盖的某些区域

在夏季融化或失去冰。

其他地区

在冬天会降雪或结冰。

然而,这个季节性周期被 50 年前会让冰川学家
震惊的总体质量损失速度黯然失色

我们从未想过冰盖会
如此迅速地失去质量进入海洋。

自 2002 年开始进行这些测量以来

,冰盖已经失去了如此多的冰

,如果这些水堆积
在我们最小的大陆上,

它将淹没澳大利亚齐膝深。

这怎么可能?

好吧,冰下是基岩。

我们使用雷达对冰流过的山丘、
山谷、山脉和洼地

进行成像。

隐藏在冰盖下的是
大峡谷大小的通道,这些通道

将冰和水
从格陵兰岛汇入海洋。

雷达
可以揭示基岩的原因

是冰
对雷达是完全透明的。

你可以做一个实验。

回家
把冰块放在微波炉里。

它不会融化,

因为微波或雷达会

直接穿过冰层
而不会发生相互作用。

如果你想融化你的冰块,
你必须把它弄湿,

因为水
在微波炉中很容易加热。

这就是
微波炉设计的全部原则。

雷达可以看到水。

雷达显示

我的同事奥利维亚脚下七层楼下隐藏着一个巨大的液态水池

在这里,她使用

泵将一些水
带回冰盖表面。

就在六年前,我们还不知道
这个冰川含水层的存在。

当雪在夏日的阳光

下融化并向下涓涓细流时,含水层就形成了。

它在巨大的水池中形成水坑。

从那里,雪就像一个冰屋,

将水
与寒冷和上面的风隔绝开来。

因此,水可以

年复一年地以液态形式隐藏在冰盖中。

问题是,接下来会发生什么?

水会永远留在那里吗?

它可以。

还是它找到了
通往全球海洋的出路?

水到达基岩

并从那里进入海洋

的一种可能方式是裂缝或冰裂缝。

当裂缝充满水时,

水的重量
迫使它们越来越深。

这就是水力压裂如何

从地球深处提取天然气。

加压流体使岩石破裂。

所需要的只是开始。

好吧,我们最近发现

在这个冰川含水层附近的格陵兰冰盖上有裂缝。

你可以飞越
格陵兰岛的大部分冰盖

,什么都看不到,

没有裂缝,表面没有任何特征,

但是当这架直升机
飞向海岸时

,水流下山的路径会

出现一个裂缝,

然后 一个又一个。

这些裂缝是否充满了液态水?

如果是这样,
他们把水喝多深?

他们能把它带到基岩

和海洋吗?

为了回答这些问题,

我们需要一些
超越遥感数据的东西。

我们需要数字模型。

我编写
在超级计算机上运行的数字模型。

数值模型
只是一组方程式

,它们共同作用来描述某事。

它可以像
序列中的下一个数字一样简单——

一、三、五、七——

也可以是一组更
复杂的方程

根据当前已知条件预测未来。

在我们的例子中,
冰如何破裂的方程是什么?

嗯,工程师
已经非常

了解铝、钢和塑料
在压力下是如何断裂的。

这是我们社会的一个重要问题。

事实
证明,

关于材料如何断裂的工程方程

与我的物理作业没有什么不同。

所以我借了它们,把它们改装成冰,

然后我有了一个数值模型,
用来说明裂缝

在充满含水层的水时如何破裂。

这就是数学的力量。

它可以帮助我们了解
我们世界中的真实过程。

现在我将向您展示
我的数值模型的结果,

但首先我应该指出

,裂缝的
宽度大约是深度的一千倍,

因此在此处的主面板中,

我们已放大以更好地查看细节 .

您可以查看右侧较小的
面板,

以了解裂缝的高度和瘦身的真实比例。

随着含水层的水
流入裂缝,

其中一些
在负 15 摄氏度的冰中重新冻结。


和你厨房的冰柜一样冷。

但是,

如果
从冰川含水层流入的流量足够高,则可以克服这种损失。

在我们的例子中,它是

,含水层的水将裂缝
一直推到

一千米以下的冰盖底部。

从那里,它有一条通向海洋的清晰路径

因此,含水层水

是我们作为全球社会所经历的海平面每年上升 3 毫米的一部分。

但还有更多

:含水层的水
可能超过了它的重量。

冰以复杂的方式流动。

在某些地方,冰流得非常快。

这里的冰盖底部往往有水。

在其他地方,没有那么快。

通常,那里
的底部没有水。

现在我们知道含水层的水
正在到达冰盖的底部

,下一个问题是

:它是否使冰本身
更快地流入海洋?

我们正试图揭开
隐藏在格陵兰冰盖内的这些谜团,

以便我们能够更好地规划
它所拥有的海平面上升。

格陵兰岛自 2002 年以来损失的冰

量只是冰盖所含冰量的一小部分

冰盖是巨大而强大的机器
,可以长时间运行。

在接下来的 80 年中,全球海平面
将至少上升 20 厘米,

可能高达 1 米,

甚至更多。

我们
对未来海平面上升的理解很好,

但我们的预测范围很广。

作为冰川学家
和科学家

,缩小这些不确定性是我们的职责。

海平面将上升多少,

它会以多快的速度到达这里?

我们需要知道多少和多快,

以便世界及其社区能够
为即将到来的海平面上升做好计划。

谢谢你。

(掌声)