A crash course in organic chemistry Jakob Magolan

I’d like you to ask yourself,

what do you feel when you hear
the words “organic chemistry?”

What comes to mind?

There is a course offered
at nearly every university,

and it’s called Organic Chemistry,

and it is a grueling, heavy
introduction to the subject,

a flood of content
that overwhelms students,

and you have to ace it if you want
to become a doctor or a dentist

or a veterinarian.

And that is why so many students
perceive this science like this …

as an obstacle in their path,

and they fear it and they hate it

and they call it a weed-out course.

What a cruel thing for a subject
to do to young people,

weed them out.

And this perception spread
beyond college campuses long ago.

There is a universal anxiety
about these two words.

I happen to love this science,

and I think this position
in which we have placed it

is inexcusable.

It’s not good for science,
and it’s not good for society,

and I don’t think it has to be this way.

And I don’t mean that this class
should be easier. It shouldn’t.

But your perception of these two words

should not be defined
by the experiences of premed students

who frankly are going through
a very anxious time of their lives.

So I’m here today because I believe

that a basic knowledge
of organic chemistry is valuable,

and I think that it can be made
accessible to everybody,

and I’d like to prove that to you today.

Would you let me try?

Audience: Yeah!

Jakob Magolan: All right, let’s go for it.

(Laughter)

Here I have one of these
overpriced EpiPens.

Inside it is a drug called epinephrine.

Epinephrine can restart
the beat of my heart,

or it could stop a life-threatening
allergic reaction.

An injection of this
right here will do it.

It would be like turning
the ignition switch

in my body’s fight-or-flight machinery.

My heart rate, my blood pressure would
go up so blood could rush to my muscles.

My pupils would dilate.
I would feel a wave of strength.

Epinephrine has been the difference
between life and death for many people.

This is like a little miracle
that you can hold in your fingers.

Here is the chemical structure
of epinephrine.

This is what organic chemistry looks like.

It looks like lines and letters …

No meaning to most people.

I’d like to show you what I see
when I look at that picture.

I see a physical object

that has depth and rotating parts,

and it’s moving.

We call this a compound or a molecule,

and it is 26 atoms that are stitched
together by atomic bonds.

The unique arrangement of these atoms
gives epinephrine its identity,

but nobody has ever
actually seen one of these,

because they’re very small,

so we’re going to call this
an artistic impression,

and I want to explain to you
how small this is.

In here, I have less than
half a milligram of it dissolved in water.

It’s the mass of a grain of sand.

The number of epinephrine
molecules in here is one quintillion.

That’s 18 zeroes.

That number is hard to visualize.

Seven billion of us on this planet?

Maybe 400 billion stars in our galaxy?

You’re not even close.

If you wanted to get
into the right ballpark,

you’d have to imagine every grain of sand

on every beach,
under all the oceans and lakes,

and then shrink them all
so they fit in here.

Epinephrine is so small
we will never see it,

not through any microscope ever,

but we know what it looks like,

because it shows itself
through some sophisticated machines

with fancy names

like “nuclear magnetic
resonance spectrometers.”

So visible or not, we know
this molecule very well.

We know it is made
of four different types of atoms,

hydrogen, carbon, oxygen and nitrogen.

These are the colors
we typically use for them.

Everything in our universe
is made of little spheres

that we call atoms.

There’s about a hundred
of these basic ingredients,

and they’re all made
from three smaller particles:

protons, neutrons, electrons.

We arrange these atoms
into this familiar table.

We give them each a name and a number.

But life as we know it
doesn’t need all of these,

just a smaller subset, just these.

And there are four atoms in particular
that stand apart from the rest

as the main building blocks of life,

and they are the same ones
that are found in epinephrine:

hydrogen, carbon, nitrogen and oxygen.

Now what I tell you next
is the most important part.

When these atoms
connect to form molecules,

they follow a set of rules.

Hydrogen makes one bond,

oxygen always makes two,

nitrogen makes three

and carbon makes four.

That’s it.

HONC – one, two, three, four.

If you can count to four,
and you can misspell the word “honk,”

you’re going to remember this
for the rest of your lives.

(Laughter)

Now here I have four bowls
with these ingredients.

We can use these to build molecules.

Let’s start with epinephrine.

Now, these bonds between atoms,
they’re made of electrons.

Atoms use electrons like arms
to reach out and hold their neighbors.

Two electrons in each bond,
like a handshake,

and like a handshake,
they are not permanent.

They can let go of one atom
and grab another.

That’s what we call a chemical reaction,

when atoms exchange partners
and make new molecules.

The backbone of epinephrine
is made mostly of carbon atoms,

and that’s common.

Carbon is life’s favorite
structural building material,

because it makes
a good number of handshakes

with just the right grip strength.

That’s why we define organic chemistry
as the study of carbon molecules.

Now, if we build the smallest molecules
we can think of that follow our rules,

they highlight our rules,
and they have familiar names:

water, ammonia and methane,
H20 and NH3 and CH4.

The words “hydrogen,”
“oxygen” and “nitrogen” –

we use the same words

to name these three molecules
that have two atoms each.

They still follow the rules,

because they have one, two
and three bonds between them.

That’s why oxygen gets called O2.

I can show you combustion.

Here’s carbon dioxide, CO2.

Above it, let’s place water and oxygen,
and beside it, some flammable fuels.

These fuels are made
of just hydrogen and carbon.

That’s why we call them hydrocarbons.
We’re very creative.

(Laughter)

So when these crash
into molecules of oxygen,

as they do in your engine
or in your barbecues,

they release energy and they reassemble,

and every carbon atom
ends up at the center of a CO2 molecule,

holding on to two oxygens,

and all the hydrogens end up
as parts of waters,

and everybody follows the rules.

They are not optional,

and they’re not optional
for bigger molecules either,

like these three.

This is our favorite vitamin

sitting next to our favorite drug,

(Laughter)

and morphine is one of the most
important stories in medical history.

It marks medicine’s first
real triumph over physical pain,

and every molecule has a story,

and they are all published.

They’re written by scientists,
and they’re read by other scientists,

so we have handy representations
to do this quickly on paper,

and I need to teach you how to do that.

So we lay epinephrine flat on a page,

and then we replace all the spheres
with simple letters,

and then the bonds
that lie in the plane of the page,

they just become regular lines,

and the bonds that point
forwards and backwards,

they become little triangles,

either solid or dashed to indicate depth.

We don’t actually draw these carbons.

We save time by just hiding them.

They’re represented
by corners between the bonds,

and we also hide every hydrogen
that’s bonded to a carbon.

We know they’re there

whenever a carbon is showing us
any fewer than four bonds.

The last thing that’s done
is the bonds between OH and NH.

We just get rid of those
to make it cleaner,

and that’s all there is to it.

This is the professional way
to draw molecules.

This is what you see on Wikipedia pages.

It takes a little bit of practice,
but I think everyone here could do it,

but for today, this is epinephrine.

This is also called adrenaline.
They’re one and the same.

It’s made by your adrenal glands.

You have this molecule swimming
through your body right now.

It’s a natural molecule.

This EpiPen would just give you
a quick quintillion more of them.

(Laughter)

We can extract epinephrine

from the adrenal glands
of sheep or cattle,

but that’s not
where this stuff comes from.

We make this epinephrine in a factory

by stitching together smaller molecules
that come mostly from petroleum.

And this is 100 percent synthetic.

And that word, “synthetic,”
makes some of us uncomfortable.

It’s not like the word “natural,”
which makes us feel safe.

But these two molecules,
they cannot be distinguished.

We’re not talking about two cars
that are coming off an assembly line here.

A car can have a scratch on it,

and you can’t scratch an atom.

These two are identical in a surreal,
almost mathematical sense.

At this atomic scale,
math practically touches reality.

And a molecule of epinephrine …

it has no memory of its origin.

It just is what it is,

and once you have it,

the words “natural” and “synthetic,”
they don’t matter,

and nature synthesizes
this molecule just like we do,

except nature is much better
at this than we are.

Before there was life on earth,

all the molecules were small, simple:

carbon dioxide, water, nitrogen,

just simple things.

The emergence of life changed that.

Life brought biosynthetic factories
that are powered by sunlight,

and inside these factories,
small molecules crash into each other

and become large ones:
carbohydrates, proteins, nucleic acids,

multitudes of spectacular creations.

Nature is the original organic chemist,

and her construction also fills our sky
with the oxygen gas we breathe,

this high-energy oxygen.

All of these molecules are infused
with the energy of the sun.

They store it like batteries.

So nature is made of chemicals.

Maybe you guys can help me
to reclaim this word, “chemical,”

because it has been stolen from us.

It doesn’t mean toxic,
and it doesn’t mean harmful,

and it doesn’t mean man-made or unnatural.

It just means “stuff,” OK?

(Laughter)

You can’t have
chemical-free lump charcoal.

That is ridiculous.

(Laughter)

And I’d like to do one more word.

The word “natural” doesn’t mean “safe,”

and you all know that.

Plenty of nature’s
chemicals are quite toxic,

and others are delicious,

and some are both …

(Laughter)

toxic and delicious.

The only way to tell
whether something is harmful

is to test it,

and I don’t mean you guys.

Professional toxicologists:
we have these people.

They’re well-trained,

and you should trust them like I do.

So nature’s molecules are everywhere,

including the ones that have decomposed

into these black mixtures
that we call petroleum.

We refine these molecules.

There’s nothing unnatural about them.

We purify them.

Now, our dependence on them for energy –

that means that every one of those carbons
gets converted into a molecule of CO2.

That’s a greenhouse gas
that is messing up our climate.

Maybe knowing this chemistry
will make that reality easier to accept

for some people, I don’t know,

but these molecules
are not just fossil fuels.

They’re also the cheapest
available raw materials

for doing something
that we call synthesis.

We’re using them like pieces of LEGO.

We have learned how to connect them
or break them apart with great control.

I have done a lot of this myself,

and I still think it’s amazing
it’s even possible.

What we do is kind of like assembling LEGO

by dumping boxes of it
into washing machines,

but it works.

We can make molecules that are
exact copies of nature, like epinephrine,

or we can make creations of our own
from scratch, like these two.

One of these eases the symptoms
of multiple sclerosis;

the other one cures a type of blood cancer
that we call T-cell lymphoma.

A molecule with the right size and shape,
it’s like a key in a lock,

and when it fits, it interferes
with the chemistry of a disease.

That’s how drugs work.

Natural or synthetic,

they’re all just molecules that happen
to fit snugly somewhere important.

But nature is much better
at making them than we are,

so hers look more impressive than ours,

like this one.

This is called vancomycin.

She gave this majestic beast
two chlorine atoms

to wear like a pair of earrings.

We found vancomycin in a puddle of mud
in a jungle in Borneo in 1953.

It’s made by a bacteria.

We can’t synthesize this
cost-efficiently in a lab.

It’s too complicated for us, but we
can harvest it from its natural source,

and we do, because this is
one of our most powerful antibiotics.

And new molecules are reported
in our literature every day.

We make them or we find them
in every corner of this planet.

And that’s where drugs come from,

and that’s why your doctors
have amazing powers …

(Laughter)

to cure deadly infections
and everything else.

Being a physician today
is like being a knight in shining armor.

They fight battles
with courage and composure,

but also with good equipment.

So let’s not forget the role
of the blacksmith in this picture,

because without the blacksmith,
things would look a little different …

(Laughter)

But this science is bigger than medicine.

It is oils and solvents and flavors,
fabrics, all plastics,

the cushions that
you’re sitting on right now –

they’re all manufactured,
and they’re mostly carbon,

so that makes all of it organic chemistry.

This is a rich science.

I left out a lot today:

phosphorus and sulfur and the other atoms,

and why they all bond the way they do,

and symmetry

and non-bonding electrons,

and atoms that are charged,

and reactions and their mechanisms,
and it goes on and on and on,

and synthesis takes a long time to learn.

But I didn’t come here to teach
you guys organic chemistry –

I just wanted to show it to you,

and I had a lot of help with that today
from a young man named Weston Durland,

and you’ve already seen him.

He’s an undergraduate
student in chemistry,

and he also happens to be
pretty good with computer graphics.

(Laughter)

So Weston designed
all the moving molecules

that you saw today.

He and I wanted to demonstrate
through the use of graphics like these

to help someone talk
about this intricate science.

But our main goal was just to show you

that organic chemistry
is not something to be afraid of.

It is, at its core, a window

through which the beauty
of the natural world looks richer.

Thank you.

(Applause)

我想让你问问自己,

当你听到“有机化学”这个词时,你有什么感受

想到什么?

几乎每所大学都有一门课程,

叫做有机化学

,它是一个令人精疲力竭、沉重
的学科介绍

,大量的内容
让学生

不知所措,如果你
想成为一名医生或 牙医

或兽医。

这就是为什么这么多学生
将这门科学视为这样……

作为他们道路上的障碍

,他们害怕它,他们讨厌它

,他们称之为淘汰课程。

一个臣民对年轻人做多么残忍的事情

把他们淘汰掉。

这种看法
很久以前就传遍了大学校园之外。 对这两个词

有一种普遍的焦虑

我碰巧喜欢这门科学

,我认为
我们把它放在这个位置

是不可原谅的。

这对科学不利,
对社会不利

,我认为不必如此。

我并不是说这门课
应该更容易。 它不应该。

但是你对这两个词的看法

不应该被
预科生的经历所定义,

他们坦率地说正在
经历他们一生中非常焦虑的时期。

所以我今天来到这里是因为我

相信有机化学的基本
知识很有价值,

而且我认为
每个人都可以使用它,

我今天想向你们证明这一点。

你让我试试?

观众:对!

Jakob Magolan:好吧,让我们开始吧。

(笑声)

我有一个
价格过高的 EpiPens。

里面是一种叫做肾上腺素的药物。

肾上腺素可以
让我的心跳重新开始,

或者它可以阻止危及生命的
过敏反应。

在这里注射这个
就可以了。

这就像

在我身体的战斗或飞行机器中转动点火开关。

我的心率,我的血压
会上升,所以血液会涌向我的肌肉。

我的瞳孔会扩大。
我会感觉到一股力量。

肾上腺素
对许多人来说是生死攸关的事。

这就像一个小奇迹
,你可以握在手指上。

这是肾上腺素的化学结构

这就是有机化学的样子。

它看起来像线条和字母……

对大多数人来说没有意义。

我想向你展示
我看到那张照片时所看到的。

我看到一个

有深度和旋转部件的物理对象

,它正在移动。

我们称之为化合物或分子

,它是
由原子键缝合在一起的 26 个原子。

这些原子的独特排列
赋予了肾上腺素它的身份,

但没有人
真正见过其中之一,

因为它们非常小,

所以我们
称之为艺术印象

,我想向你解释
这有多小 是。

在这里,我只有不到
半毫克溶解在水中。

这是一粒沙子的质量。

这里肾上腺素分子的数量是五亿分之一。

那是18个零。

这个数字很难想象。

这个星球上有七十亿人?

也许我们银河系中有 4000 亿颗恒星?

你甚至没有接近。

如果你想
进入正确的球场,

你必须想象

每个海滩上的每一粒沙子,
在所有海洋和湖泊下,

然后将它们全部缩小,
以便它们适合这里。

肾上腺素是如此之小,
我们永远也看不到它,

无论是通过任何显微镜,我们都无法看到它,

但我们知道它的样子,

因为它是
通过一些复杂的机器展示出来的,这些机器

有着奇特的名字,

比如“
核磁共振光谱仪”。

无论是否可见,我们都
非常了解这种分子。

我们知道它
由四种不同类型的原子组成:

氢、碳、氧和氮。

这些是
我们通常用于它们的颜色。

我们宇宙中的一切
都是由我们称之为原子的小球体组成的

这些基本成分大约有一百

,它们都是
由三个较小的粒子组成的:

质子、中子、电子。

我们将这些原子排列
到这张熟悉的表格中。

我们给他们每个人一个名字和一个号码。

但是我们所知道的生命
并不需要所有这些,

只需要一个较小的子集,就这些。

特别是有四个原子

作为生命的主要组成部分与其他原子

不同
,它们与肾上腺素中的

原子相同:氢、碳、氮和氧。

现在我接下来要告诉你的
是最重要的部分。

当这些原子
连接形成分子时,

它们遵循一套规则。

氢形成一个键,

氧总是形成两个,

氮形成三个

,碳形成四个。

而已。

HONC——一、二、三、四。

如果你能数到四,
而且你会拼错“喇叭”这个词,

你会在你的余生中记住这一点

(笑声)

现在我有四个碗,里面
有这些食材。

我们可以使用这些来构建分子。

让我们从肾上腺素开始。

现在,原子之间的这些键,
它们是由电子构成的。

原子像手臂一样使用电子
伸出并握住它们的邻居。

每个键中的两个电子,
就像握手

一样,又像握手一样,
它们不是永久的。

他们可以放开一个原子
并抓住另一个原子。

这就是我们所说的化学反应,

当原子交换伙伴
并制造新分子时。

肾上腺素的骨架
主要由碳原子组成

,这很常见。

碳是生活中最喜欢的
结构建筑材料,

因为它可以

以恰到好处的握力进行大量握手。

这就是为什么我们将有机化学定义
为对碳分子的研究。

现在,如果我们
按照我们的规则构建我们能想到的最小分子,

它们会突出我们的规则,
并且它们有熟悉的名称:

水、氨和甲烷、
H2O、NH3 和 CH4。

“氢”、
“氧”和“氮”这三个

词——我们用相同的词

来命名这三个分子
,每个分子都有两个原子。

他们仍然遵守规则,

因为他们之间有一个、两个
和三个纽带。

这就是为什么氧气被称为O2。

我可以告诉你燃烧。

这里是二氧化碳,CO2。

在它上面,我们放水和氧气,
在它旁边放一些易燃燃料。

这些燃料
仅由氢和碳制成。

这就是为什么我们称它们为碳氢化合物。
我们很有创意。

(笑声)

所以当它们
撞上氧气分子时,

就像它们在你的引擎
或你的烤肉架上一样,

它们会释放能量并重新组装

,每个碳原子
最终都会在二氧化碳分子的中心,

保持两个氧气,

所有的氢最终都
变成了水的一部分

,每个人都遵守规则。

它们不是可选的,

对于更大的分子也不是可选的,

比如这三个。

这是我们最喜欢的维生素,

旁边是我们最喜欢的药物,

(笑声

)吗啡是
医学史上最重要的故事之一。

它标志着医学第一次
真正战胜了身体疼痛

,每个分子都有一个故事

,它们都被发表了。

它们是科学家写的,
其他科学家也读过,

所以我们有方便的表示
可以在纸上快速做到这一点

,我需要教你如何做到这一点。

所以我们把肾上腺素平放在纸上,

然后我们
用简单的字母替换所有的球体,

然后
位于页面平面上的键,

它们就变成了规则的线,

而指向前后的键,

它们变成了 小三角形

,实心或虚线表示深度。

我们实际上并没有绘制这些碳。

我们通过隐藏它们来节省时间。

它们
由键之间的角表示

,我们还隐藏
了与碳键合的每个氢。

我们知道

只要碳向我们显示
少于四个键,它们就在那里。

最后完成的
是 OH 和 NH 之间的键。

我们只是去掉
那些让它更干净

,这就是它的全部。

这是
绘制分子的专业方法。

这就是您在 Wikipedia 页面上看到的内容。

这需要一点练习,
但我想这里的每个人都可以做到,

但今天,这是肾上腺素。

这也称为肾上腺素。
他们是一回事。

它是由你的肾上腺制造的。

你现在有这个分子游
过你的身体。

它是一种天然分子。

这个 EpiPen 只会给你
一个快速的 quintillion 更多。

(笑声)

我们可以


羊或牛的肾上腺中提取肾上腺素,

但这
不是这些东西的来源。

我们在工厂中

通过将
主要来自石油的较小分子缝合在一起来制造这种肾上腺素。

这是 100% 合成的。

而“合成”这个词
让我们中的一些人感到不舒服。

它不像“自然”这个词
让我们感到安全。

但这两种分子,
它们是无法区分的。

我们不是在谈论
两辆正在下线的汽车。

汽车上可以有划痕,但

你不能划伤原子。

这两者在超现实的、
几乎是数学的意义上是相同的。

在这个原子尺度上,
数学实际上触及了现实。

还有一个肾上腺素分子……

它对它的起源没有记忆。

它就是它

本来的样子,一旦你有了它

,“天然”和“合成”
这两个词就无关紧要了

,大自然
就像我们一样合成这种分子,

只是大自然
在这方面比我们好得多。

在地球上没有生命之前,

所有的分子都很小,很简单:

二氧化碳、水、氮,

只是简单的东西。

生命的出现改变了这一点。

生命带来了
以阳光为动力的生物合成工厂

,在这些工厂内部,
小分子相互碰撞

并变成大分子:
碳水化合物、蛋白质、核酸,以及

众多壮观的创造物。

大自然是最初的有机化学家

,她的建筑也让我们的天空
充满了我们呼吸的氧气,

这种高能氧气。

所有这些分子都注入
了太阳的能量。

他们像电池一样存储它。

所以自然是由化学物质构成的。

也许你们可以帮
我找回这个词,“化学”,

因为它已经被我们偷走了。

不是有毒的
,也不是有害的

,也不是人造的或不自然的。

它只是意味着“东西”,好吗?

(笑声)

你不能有
不含化学物质的块状木炭。

这太荒谬了。

(笑声)

我还想说一句。

“自然”这个词并不意味着“安全”

,你们都知道。

自然界中的很多
化学物质都是有毒的

,有的很好吃

,有的既…

(笑声)又

毒又好吃。

判断某物是否有害的唯一方法

是测试它

,我不是指你们。

专业毒理学家:
我们有这些人。

他们训练有素

,你应该像我一样信任他们。

所以自然界的分子无处不在,

包括那些已经分解


我们称之为石油的黑色混合物的分子。

我们提炼这些分子。

他们没有什么不自然的。

我们净化它们。

现在,我们对它们的能源依赖——

这意味着这些碳中的每一个都
被转化为一个二氧化碳分子。

这是一种温室气体
,正在破坏我们的气候。

也许知道这种化学物质
会让一些人更容易接受这个现实

,我不知道,

但这些
分子不仅仅是化石燃料。

它们也是我们称之为合成的最便宜的
可用原材料

我们像乐高积木一样使用它们。

我们已经学会了如何将它们连接起来
或以强大的控制力将它们分开。

我自己做了很多这样的事情

,我仍然认为这很神奇
,甚至是可能的。

我们所做的有点像

通过将成箱的乐高玩具
倒入洗衣机来组装乐高积木,

但它确实有效。

我们可以制造出
完全复制自然的分子,比如肾上腺素,

或者我们可以从头开始创造我们自己的创造物
,比如这两个。

其中之一可以缓解
多发性硬化症的症状;

另一种治疗
一种我们称之为T细胞淋巴瘤的血癌。

一个具有正确大小和形状的分子,
就像一把锁中的钥匙

,当它适合时,它会
干扰疾病的化学反应。

这就是药物的作用。

无论是天然的还是合成的,

它们都只是
恰好适合某个重要地方的分子。

但大自然
比我们更擅长制造它们,

所以她的看起来比我们的更令人印象深刻,

比如这个。

这被称为万古霉素。

她给了这只雄伟的野兽
两个氯原子

,就像一对耳环一样佩戴。 1953 年,

我们在婆罗洲丛林中的一滩泥浆中发现了万古霉素

它是由一种细菌制成的。

我们无法
在实验室中经济高效地合成这种方法。

它对我们来说太复杂了,但我们
可以从它的天然来源中收获它,

而且我们做到了,因为这
是我们最强大的抗生素之一。

我们的文献每天都在报道新分子

我们制造它们,或者我们
在这个星球的每个角落找到它们。

这就是药物的来源

,这就是为什么你们的医生
有惊人的能力……

(笑声

)治愈致命的感染
和其他一切。

今天成为一名医生
就像是一名穿着闪亮盔甲的骑士。

他们
以勇气和沉着的态度进行战斗,

但也拥有良好的装备。

所以我们不要忘记
这张照片中铁匠的角色,

因为没有铁匠,
事情看起来会有些不同……

(笑声)

但是这门科学比医学更重要。

它是油、溶剂和香料、
织物、所有塑料、

你现在坐的垫子——

它们都是制造出来的,
而且大部分是碳,

所以这一切都是有机化学。

这是一门丰富的科学。

今天我遗漏了很多:

磷、硫和其他原子,

以及为什么它们都以它们的方式键合

,对称性

和非键合电子

,带电原子

,反应和它们的机制
,它继续下去 不断

地学习,合成需要很长时间才能学习。

但我来这里不是为了教
你们有机化学——

我只是想向你们展示

一下,今天我
从一个名叫韦斯顿·德兰的年轻人那里得到了很多帮助

,你们已经见过他了。

他是一名化学专业的
本科生,

而且他恰好也
擅长计算机图形学。

(笑声)

所以韦斯顿设计

了你今天看到的所有运动分子。

他和我
想通过使用这些图形

来帮助人们
谈论这门复杂的科学。

但我们的主要目标只是向您

展示有机化学
并不可怕。

它的核心是一扇窗户,

通过它
,自然世界的美丽看起来更加丰富。

谢谢你。

(掌声)