How Do Pain Relievers Work George Zaidan

Translator: Ido Dekkers
Reviewer: Ariana Bleau Lugo

Say you’re at the beach,
and you get sand in your eyes.

How do you know the sand is there?

You obviously can’t see it,
but if you are a normal, healthy human,

you can feel it,

that sensation of extreme discomfort,
also known as pain.

Now, pain makes you do something,

in this case, rinse your eyes
until the sand is gone.

And how do you know the sand is gone?

Exactly. Because there’s no more pain.

There are people who don’t feel pain.

Now, that might sound cool, but it’s not.

If you can’t feel pain, you could
get hurt, or even hurt yourself

and never know it.

Pain is your body’s early warning system.

It protects you from the world
around you, and from yourself.

As we grow, we install pain detectors
in most areas of our body.

These detectors
are specialized nerve cells

called nociceptors

that stretch from your spinal cord
to your skin, your muscles, your joints,

your teeth and some
of your internal organs.

Just like all nerve cells,
they conduct electrical signals,

sending information from wherever
they’re located back to your brain.

But, unlike other nerve cells,

nociceptors only fire if something
happens that could cause

or is causing damage.

So, gently touch the tip of a needle.

You’ll feel the metal,
and those are your regular nerve cells.

But you won’t feel any pain.

Now, the harder you push
against the needle,

the closer you get
to the nociceptor threshold.

Push hard enough,
and you’ll cross that threshold

and the nociceptors fire,

telling your body to stop doing
whatever you’re doing.

But the pain threshold isn’t set in stone.

Certain chemicals can tune nociceptors,
lowering their threshold for pain.

When cells are damaged,
they and other nearby cells

start producing these tuning
chemicals like crazy,

lowering the nociceptors'
threshold to the point

where just touch can cause pain.

And this is where over-the-counter
painkillers come in.

Aspirin and ibuprofen

block production of one class
of these tuning chemicals,

called prostaglandins.

Let’s take a look at how they do that.

When cells are damaged, they release
a chemical called arachidonic acid.

And two enzymes called COX-1 and COX-2

convert this arachidonic acid
into prostaglandin H2,

which is then converted
into a bunch of other chemicals

that do a bunch of things,

including raise your body temperature,
cause inflammation

and lower the pain threshold.

Now, all enzymes have an active site.

That’s the place in the enzyme
where the reaction happens.

The active sites of COX-1 and COX-2

fit arachidonic acid very cozily.

As you can see, there is no room to spare.

Now, it’s in this active site
that aspirin and ibuprofen do their work.

So, they work differently.

Aspirin acts like a spine
from a porcupine.

It enters the active site
and then breaks off,

leaving half of itself in there,

totally blocking that channel
and making it impossible

for the arachidonic acid to fit.

This permanently deactivates
COX-1 and COX-2.

Ibuprofen, on the other hand,

enters the active site,

but doesn’t break apart
or change the enzyme.

COX-1 and COX-2 are free
to spit it out again,

but for the time
that that ibuprofen is in there,

the enzyme can’t bind arachidonic acid,
and can’t do its normal chemistry.

But how do aspirin and ibuprofen
know where the pain is?

Well, they don’t.

Once the drugs are in your bloodstream,

they are carried throughout your body,

and they go to painful areas
just the same as normal ones.

So that’s how aspirin and ibuprofen work.

But there are other dimensions to pain.

Neuropathic pain, for example,

is pain caused by damage
to our nervous system itself;

there doesn’t need to be
any sort of outside stimulus.

And scientists are discovering
that the brain controls

how we respond to pain signals.

For example, how much pain
you feel can depend on

whether you’re paying attention
to the pain, or even your mood.

Pain is an area of active research.

If we can understand it better, maybe
we can help people manage it better.

译者:Ido Dekkers
审稿人:Ariana Bleau Lugo

说你在海滩上
,你的眼睛里有沙子。

你怎么知道那里有沙子?

你显然看不到它,
但如果你是一个正常、健康的人,

你就能感觉到它,

那种极度不适的感觉,
也被称为疼痛。

现在,疼痛让你做点什么,

在这种情况下,冲洗你的眼睛,
直到沙子消失。

你怎么知道沙子不见了?

确切地。 因为没有更多的痛苦。

有些人不会感到疼痛。

现在,这听起来可能很酷,但事实并非如此。

如果你感觉不到疼痛,你可能
会受到伤害,甚至伤害自己

却永远不知道。

疼痛是你身体的早期预警系统。

它保护您免受周围世界
和您自己的伤害。

随着我们的成长,我们会
在身体的大部分区域安装疼痛探测器。

这些探测器
是专门的神经细胞,

称为伤害感受器

,从你的脊髓延伸
到你的皮肤、肌肉、关节

、牙齿和
一些内脏。

就像所有神经细胞一样,
它们传导电信号,

将信息从
它们所在的任何地方发送回你的大脑。

但是,与其他神经细胞不同,

伤害感受器只有在
发生可能导致

或正在造成损害的事情时才会触发。

因此,轻轻触摸针尖。

你会感觉到金属
,这些是你的常规神经细胞。

但你不会感到任何疼痛。

现在,你越用力地
推针

,你
就越接近伤害感受器阈值。

用力推动
,你就会越过那个门槛

,伤害感受器就会发射,

告诉你的身体停止
做你正在做的任何事情。

但疼痛阈值并不是一成不变的。

某些化学物质可以调节伤害感受器,
降低它们的疼痛阈值。

当细胞受损时,
它们和附近的其他细胞

开始疯狂地产生这些调节
化学物质,

将伤害感受器的
阈值降低

到仅仅触摸就会引起疼痛的程度。

这就是非处方
止痛药的用武之地。

阿司匹林和布洛芬会

阻止
这类调节化学物质(

称为前列腺素)的产生。

让我们来看看他们是如何做到这一点的。

当细胞受损时,它们会释放
出一种叫做花生四烯酸的化学物质。

两种称为 COX-1 和 COX-2 的酶

将这种花生四烯酸
转化为前列腺素 H2

,然后将其
转化为一系列其他化学

物质,这些化学物质可以做很多事情,

包括提高体温、
引起炎症

和降低疼痛阈值。

现在,所有酶都有一个活性位点。

那是酶
中发生反应的地方。

COX-1和COX-2的活性位点

非常贴合花生四烯酸。

如您所见,没有多余的空间。

现在,阿司匹林和布洛芬就是在这个活跃的网站
上发挥作用的。

因此,它们的工作方式不同。

阿司匹林的作用就像
豪猪的脊椎。

它进入活性位点
,然后断裂,

将一半自身留在其中,

完全阻塞该通道

使花生四烯酸无法适应。

这会永久停用
COX-1 和 COX-2。

另一方面,布洛芬

进入活性位点,

但不会分解
或改变酶。

COX-1 和 COX-2 可以自由
地再次将其吐出,


在布洛芬存在期间

,酶无法结合花生四烯酸,
也无法进行正常的化学反应。

但是阿司匹林和布洛芬
怎么知道疼痛在哪里呢?

好吧,他们没有。

一旦药物进入您的血液,

它们就会被携带到您的全身,

并且它们会像正常区域一样进入疼痛区域

这就是阿司匹林和布洛芬的作用。

但疼痛还有其他方面。

例如,神经

性疼痛是由
我们的神经系统本身受损引起的疼痛。

不需要
任何形式的外部刺激。

科学家们
发现大脑控制

着我们对疼痛信号的反应。

例如,您感受到的疼痛程度
可能

取决于您是否
关注疼痛,甚至是您的情绪。

疼痛是一个活跃的研究领域。

如果我们能更好地理解它,也许
我们可以帮助人们更好地管理它。