How does your brain respond to pain Karen D. Davis

Translator: Jessica Ruby
Reviewer: Caroline Cristal

Let’s say that it would take you
ten minutes to solve this puzzle.

How long would it take

if you received constant
electric shocks to your hands?

Longer, right?

Because the pain would distract
you from the task.

Well, maybe not;

it depends on how you handle pain.

Some people are distracted by pain.

It takes them longer to complete a task,
and they do it less well.

Other people use tasks to distract
themselves from pain,

and those people actually do the task

faster and better when they’re in pain

than when they’re not.

Some people can just send
their mind wandering

to distract themselves from pain.

How can different people

be subjected to the exact
same painful stimulus

and yet experience
the pain so differently?

And why does this matter?

First of all, what is pain?

Pain is an unpleasant sensory
and emotional experience,

associated with actual
or potential tissue damage.

Pain is something we experience,

so it’s best measured
by what you say it is.

Pain has an intensity;

you can describe it on a scale

from zero, no pain, to ten,
the most pain imaginable.

But pain also has a character,

like sharp, dull, burning, or aching.

What exactly creates these
perceptions of pain?

Well, when you get hurt,

special tissue damage-sensing nerve cells,

called nociceptors, fire and send signals

to the spinal cord
and then up to the brain.

Processing work gets done
by cells called neurons and glia.

This is your Grey matter.

And brain superhighways carry information
as electrical impulses

from one area to another.

This is your white matter.

The superhighway that carries
pain information

from the spinal cord to the brain

is our sensing pathway

that ends in the cortex,

a part of the brain
that decides what to do

with the pain signal.

Another system
of interconnected brain cells

called the salience network

decides what to pay attention to.

Since pain can have serious consequences,

the pain signal immediately activates
the salience network.

Now, you’re paying attention.

The brain also responds to the pain

and has to cope with these pain signals.

So, motor pathways are activated

to take your hand off
a hot stove, for example.

But modulation networks are also activated

that deliver endorphins and enkephalins,

chemicals released when you’re in pain
or during extreme exercise,

creating the runner’s high.

These chemical systems help
regulate and reduce pain.

All these networks
and pathways work together

to create your pain experience,

to prevent further tissue damage,

and help you to cope with pain.

This system is similar for everyone,

but the sensitivity and efficacy
of these brain circuits

determines how much
you feel and cope with pain.

This is why some people have
greater pain than others

and why some develop chronic pain

that does not respond to treatment,

while others respond well.

Variability in pain sensitivities

is not so different
than all kinds of variability

in responses to other stimuli.

Like how some people love roller coasters,

but other people suffer
from terrible motion sickness.

Why does it matter
that there is variability

in our pain brain circuits?

Well, there are many treatments for pain,

targeting different systems.

For mild pain,
non-prescription medications

can act on cells
where the pain signals start.

Other stronger pain
medicines and anesthetics

work by reducing the activity
in pain-sensing circuits

or boosting our coping
system, or endorphins.

Some people can cope with pain
using methods that involve

distraction, relaxation, meditation, yoga,

or strategies that can be taught,
like cognitive behavioral therapy.

For some people who suffer
from severe chronic pain,

that is pain that doesn’t go away

months after their injury
should have healed,

none of the regular treatments work.

Traditionally, medical
science has been about

testing treatments on large groups

to determine what would help
a majority of patients.

But this has usually left out

some who didn’t benefit from the treatment

or experienced side effects.

Now, new treatments that directly
stimulate or block

certain pain-sensing attention
or modulation networks

are being developed,

along with ways to tailor them
to individual patients,

using tools like magnetic
resonance imaging

to map brain pathways.

Figuring out how your brain
responds to pain

is the key to finding
the best treatment for you.

That’s true personalized medicine.

译者:Jessica Ruby
审稿人:Caroline Cristal

假设你需要
十分钟才能解决这个难题。

如果
您的手不断受到电击,需要多长时间?

更长,对吧?

因为疼痛会分散
你的注意力。

好吧,也许不是;

这取决于你如何处理疼痛。

有些人因疼痛而分心。

他们完成一项任务需要更长的时间,
而且他们做得不太好。

其他人使用任务来分散
自己对疼痛的注意力,

而这些人实际上

在疼痛时比没有疼痛时更快更好地完成任务

有些人可以只是让
他们的思绪四处游荡,

以分散自己对痛苦的注意力。

不同的人怎么

会受到完全相同的
痛苦刺激

,却对
痛苦有如此不同的体验?

为什么这很重要?

首先,什么是痛?

疼痛是一种不愉快的感觉
和情绪体验,

与实际
或潜在的组织损伤有关。

疼痛是我们所经历的,

所以最好
用你所说的来衡量。

疼痛有强度;

你可以用

从零(无痛)到十(
可以想象的最痛)的等级来描述它。

但疼痛也有其特点,

如尖锐、钝痛、灼痛或疼痛。

究竟是什么造成了这些
对疼痛的感知?

好吧,当你受伤时,

特殊的组织损伤感知神经细胞,

称为伤害感受器,会发射信号并将信号发送

到脊髓
,然后再发送到大脑。

处理工作
由称为神经元和神经胶质的细胞完成。

这是你的灰质。

大脑高速公路将信息
作为电脉冲

从一个区域传输到另一个区域。

这是你的白质。


疼痛信息

从脊髓传送到大脑的高速公路

是我们的感知通路

,它终止于皮质,

大脑的一部分
决定如何

处理疼痛信号。

另一个称为显着网络
的相互连接的脑细胞系统

决定了要注意什么。

由于疼痛会产生严重后果

,因此疼痛信号会立即
激活显着网络。

现在,你注意了。

大脑也会对疼痛做出反应,

并且必须应对这些疼痛信号。

因此,例如,运动通路被激活

以将您的手
从热炉上移开。

但调节网络也被激活

,释放内啡肽和脑啡肽,

当你在疼痛或剧烈运动时释放化学物质

创造跑步者的快感。

这些化学系统有助于
调节和减轻疼痛。

所有这些网络
和途径

共同创造您的疼痛体验

,防止进一步的组织损伤,

并帮助您应对疼痛。

这个系统对每个人来说都是相似的,

但这些大脑回路的敏感性和功效

决定了
你对疼痛的感受和应对程度。

这就是为什么有些人的
疼痛比其他人更大

,为什么有些人会发展

为对治疗没有反应的慢性疼痛,

而另一些人则反应良好。

疼痛敏感性

的变异性

与对其他刺激的反应的各种变异性没有太大区别。

就像有些人喜欢过山车,

但其他人却
患有可怕的晕车。

为什么

我们的疼痛脑回路存在变异性很重要?

嗯,有许多

针对不同系统的疼痛治疗方法。

对于轻度疼痛,
非处方药

可以作用于
疼痛信号开始的细胞。

其他更强的止痛
药和麻醉剂

通过减少
疼痛感应回路的活动

或增强我们的应对
系统或内啡肽来发挥作用。

有些人可以
使用涉及

分心、放松、冥想、瑜伽

或可以教授的策略(
如认知行为疗法)的方法来应对疼痛。

对于一些
患有严重慢性疼痛的人来说,

即受伤后数月仍未消失的疼痛

应该已经愈合,

常规治疗都不起作用。

传统上,医学
科学一直在

对大型群体进行测试,

以确定什么可以
帮助大多数患者。

但这通常会排除

一些没有从治疗中受益

或经历过副作用的人。

现在,正在开发直接
刺激或阻断

某些疼痛感知注意力
或调节网络的新疗法

以及

使用磁共振成像等工具

绘制大脑通路的方法来为个体患者量身定制它们。

弄清楚你的大脑
对疼痛的反应


为你找到最佳治疗方法的关键。

这才是真正的个性化医疗。