Could we create dark matter Rolf Landua

85% of the matter in our universe
is a mystery.

We don’t know what it’s made of,
which is why we call it dark matter.

But we know it’s out there because we
can observe its gravitational attraction

on galaxies and other celestial objects.

We’ve yet to directly observe dark matter,

but scientists theorize that we may
actually be able to create it

in the most powerful particle collider
in the world.

That’s the 27 kilometer-long
Large Hadron Collider, or LHC,

in Geneva, Switzerland.

So how would that work?

In the LHC, two proton beams
move in opposite directions

and are accelerated
to near the speed of light.

At four collision points, the beams cross
and protons smash into each other.

Protons are made of much smaller
components called quarks and gluons

In most ordinary collisions, the two
protons pass through each other

without any significant outcome.

However, in about
one in a million collisions,

two components hit each other
so violently,

that most of the collision energy
is set free

producing thousands of new particles.

It’s only in these collisions that very
massive particles,

like the theorized dark matter,
can be produced.

The collision points
are surrounded by detectors

containing about 100 million sensors.

Like huge three-dimensional cameras,

they gather information
on those new particles,

including their trajectory,

electrical charge,

and energy.

Once processed, the computers can depict
a collision as an image.

Each line is the path
of a different particle,

and different types of particles
are color-coded.

Data from the detectors
allows scientists to determine

what each of these particles is,

things like photons and electrons.

Now, the detectors take snapshots of about
a billion of these collisions per second

to find signs of extremely rare
massive particles.

To add to the difficulty,

the particles we’re looking for
may be unstable

and decay into more familiar particles
before reaching the sensors.

Take, for example, the Higgs boson,

a long-theorized particle that wasn’t
observed until 2012.

The odds of a given collision producing
a Higgs boson are about one in 10 billion,

and it only lasts for
a tiny fraction of a second

before decaying.

But scientists developed theoretical
models to tell them what to look for.

For the Higgs, they thought it would
sometimes decay into two photons.

So they first examined only
the high-energy events

that included two photons.

But there’s a problem here.

There are innumerable
particle interactions

that can produce two random photons.

So how do you separate out the Higgs
from everything else?

The answer is mass.

The information gathered by the detectors
allows the scientists to go a step back

and determine the mass of whatever it was
that produced two photons.

They put that mass value into a graph

and then repeat the process
for all events with two photons.

The vast majority of these events
are just random photon observations,

what scientists call background events.

But when a Higgs boson is produced
and decays into two photons,

the mass always comes out to be the same.

Therefore, the tell-tale sign
of the Higgs boson

would be a little bump sitting on top
of the background.

It takes billions of observations
before a bump like this can appear,

and it’s only considered
a meaningful result

if that bump becomes significantly
higher than the background.

In the case of the Higgs boson,

the scientists at the LHC announced their
groundbreaking result

when there was only
a one in 3 million chance

this bump could have
appeared by a statistical fluke.

So back to the dark matter.

If the LHC’s proton beams have enough
energy to produce it,

that’s probably an even rarer occurrence
than the Higgs boson.

So it takes quadrillions of collisions
combined with theoretical models

to even start to look.

That’s what the LHC is currently doing.

By generating a mountain of data,

we’re hoping to find more tiny bumps
in graphs

that will provide evidence for
yet unknown particles, like dark matter.

Or maybe what we’ll
find won’t be dark matter,

but something else

that would reshape our understanding
of how the universe works entirely.

That’s part of the fun at this point.

We have no idea what we’re
going to find.

我们宇宙中 85% 的物质
都是一个谜。

我们不知道它是由什么构成的,
这就是为什么我们称它为暗物质。

但我们知道它就在那里,因为我们
可以观察到

它对星系和其他天体的引力。

我们还没有直接观察到暗物质,

但科学家们推测,我们
实际上可能能够

在世界上最强大的粒子对撞机
中创造它。

那是位于瑞士日内瓦的 27 公里长的
大型强子对撞机(LHC)

那么这将如何运作呢?

在大型强子对撞机中,两束质子束
沿相反方向移动,

并被加速
到接近光速。

在四个碰撞点,光束交叉
,质子相互碰撞。

质子由
称为夸克和胶子的小得多的成分组成。

在大多数普通碰撞中,两个
质子相互穿过

而没有任何明显的结果。

然而,在大约
百万分之一的碰撞中,

两个成分相互碰撞得
如此猛烈,

以至于大部分碰撞能量都
被释放出来,

产生了数千个新粒子。

只有在这些碰撞中,才能产生非常
大的粒子,

比如理论上的暗物质

碰撞点

包含大约 1 亿个传感器的探测器包围。

就像巨大的三维相机一样,

它们收集
有关这些新粒子的信息,

包括它们的轨迹、

电荷

和能量。

处理完成后,计算机可以
将碰撞描绘为图像。

每条线
都是不同粒子的路径

,不同类型的粒子
用颜色编码。

来自探测器的数据
使科学家能够确定

这些粒子中的每一个是什么

,比如光子和电子。

现在,探测器
每秒拍摄大约 10 亿次此类碰撞的快照,

以寻找极其罕见的
大质量粒子的迹象。

更困难的是,

我们正在寻找的粒子
可能是不稳定的,

并且在到达传感器之前会衰减成更熟悉的粒子

以希格斯玻色子为例,它是

一种长期理论化的粒子,
直到 2012 年才被观察到。

给定碰撞
产生希格斯玻色子的几率约为 100 亿分之一,

并且只持续
一小部分一秒

在腐烂之前。

但是科学家们开发了理论
模型来告诉他们要寻找什么。

对于希格斯粒子,他们认为它
有时会衰变为两个光子。

所以他们首先只检查

包含两个光子的高能事件。

但是这里有一个问题。

有无数的
粒子

相互作用可以产生两个随机光子。

那么,如何将希格斯粒子
与其他一切分开呢?

答案是大众。

探测器收集的信息
使科学家们可以

后退一步,确定产生两个光子的物质的质量

他们将该质量值放入图表中

,然后
用两个光子对所有事件重复该过程。

这些事件中的绝大多数
只是随机的光子观测

,科学家们称之为背景事件。

但是当一个希格斯玻色子产生
并衰变为两个光子时

,质量总是相同的。

因此,
希格斯玻色子的标志

将是背景顶部的一个小凸起

在出现这样的凹凸之前需要进行数十亿次观察

并且只有当凹凸明显高于背景时才被认为
是有意义的结果

在希格斯玻色子的例子中,

大型强子对撞机的科学家们宣布了他们的
突破性结果

,当时
只有 300 万分之一的

机会出现这种凸起可能
是统计上的侥幸。

所以回到暗物质。

如果大型强子对撞机的质子束有足够的
能量产生它,

那可能
比希格斯玻色子更罕见。

因此,它需要数以亿计的碰撞
与理论模型相结合

才能开始观察。

这就是大型强子对撞机目前正在做的事情。

通过生成大量数据,

我们希望在图表中找到更多微小的凸起


未知粒子(如暗物质)提供证据。

或者也许我们会
发现的不是暗物质,

而是

其他会重塑我们对
宇宙完全运作方式的理解的东西。

这是目前乐趣的一部分。

我们不知道我们
会找到什么。