Can we create the perfect farm Brent Loken

Transcriber: TED Translators Admin
Reviewer: Mirjana Čutura

About 10,000 years ago,
humans began to farm.

This agricultural revolution
was a turning point in our history

that enabled people to settle,
build and create.

In short, agriculture
enabled the existence of civilization.

Today, approximately 40 percent
of our planet is farmland.

Spread all over the world,

these agricultural lands
are the pieces to a global puzzle

we are all facing:

in the future, how can we feed
every member of a growing population

a healthy diet?

Meeting this goal will require

nothing short of a second
agricultural revolution.

The first agricultural revolution

was characterized
by expansion and exploitation,

feeding people at the expense
of forests, wildlife and water

and destabilizing the climate
in the process.

That’s not an option the next time around.

Agriculture depends on a stable climate

with predictable seasons
and weather patterns.

This means we can’t keep
expanding our agricultural lands,

because doing so will undermine
the environmental conditions

that make agriculture possible
in the first place.

Instead, the next agricultural revolution

will have to increase the output
of our existing farmland for the long term

while protecting biodiversity,
conserving water

and reducing pollution
and greenhouse gas emissions.

So what will the future farms look like?

This drone is part of a fleet
that monitors the crops below.

The farm may look haphazard

but is a delicately engineered
use of the land

that intertwines crops and livestock
with wild habitats.

Conventional farming methods
cleared large swathes of land

and planted them with a single crop,

eradicating wildlife

and emitting huge amounts
of greenhouse gases in the process.

This approach aims to correct that damage.

Meanwhile, moving among the crops,

teams of field robots
apply fertilizer in targeted doses.

Inside the soil,

hundreds of sensors gather data
on nutrients and water levels.

This information reduces
unnecessary water use

and tells farmers where they should apply
more and less fertilizer

instead of causing pollution
by showering it across the whole farm.

But the farms of the future
won’t be all sensors and robots.

These technologies are designed
to help us produce food

in a way that works with the environment

rather than against it,

taking into account
the nuances of local ecosystems.

Lower-cost agricultural practices
can also serve those same goals

and are much more accessible
to many farmers.

In fact, many such practices
are already in use today

and stand to have
an increasingly large impact

as more farmers adopt them.

In Costa Rica,

farmers have intertwined farmland
with tropical habitat so successfully

that they have significantly contributed
to doubling the country’s forest cover.

This provides food
and habitat for wildlife

as well as natural pollination
and pest control

from the birds and insects
these farms attract,

producing food while restoring the planet.

In the United States,

ranchers are raising cattle
on grasslands composed of native species,

generating a valuable protein source

using production methods that store carbon
and protect biodiversity.

In Bangladesh, Cambodia and Nepal,

new approaches to rice production

may dramatically decrease
greenhouse gas emissions in the future.

Rice is a staple food
for three billion people

and the main source of livelihood
for millions of households.

More than 90 percent of rice
is grown in flooded paddies,

which use a lot of water

and release 11 percent
of annual methane emissions,

which accounts for one to two percent

of total annual greenhouse gas
emissions globally.

By experimenting with new strains of rice,

irrigating less

and adopting less labor-intensive
ways of planting seeds,

farmers in these countries

have already increased
their incomes and crop yields

while cutting down
on greenhouse gas emissions.

In Zambia,

numerous organizations
are investing in locally specific methods

to improve crop production,
reduce forest loss

and improve livelihoods for local farmers.

These efforts are projected
to increase crop yield

by almost a quarter
over the next few decades.

If combined with methods
to combat deforestation in the region,

they could move the country

toward a resilient, climate-focused
agricultural sector.

And in India,

where up to 40 percent
of post-harvest food is lost or wasted

due to poor infrastructure,

farmers have already started to implement
solar-powered cold storage capsules

that help thousands of rural farmers
preserve their produce

and become a viable part
of the supply chain.

It will take all of these methods,

from the most high-tech
to the lowest-cost,

to revolutionize farming.

High-tech interventions stand to amplify

climate- and conservation-oriented
approaches to farming,

and large producers will need to invest
in implementing these technologies.

Meanwhile, we’ll have to expand access
to the lower-cost methods

for smaller-scale farmers.

This vision of future farming
will also require a global shift

toward more plant-based diets

and huge reductions
in food loss and waste,

both of which will reduce
pressure on the land

and allow farmers to do more
with what they have available.

If we optimize food production,
both on land and sea,

we can feed humanity

within the environmental
limits of the earth,

but there’s a very small margin of error,

and it will take unprecedented
global cooperation

and coordination of the agricultural
lands we have today.

抄写员:TED Translators Admin
Reviewer:Mirjana Čutura

大约 10,000 年前,
人类开始耕种。

这场农业革命
是我们历史上的一个转折点,

它使人们能够定居、
建造和创造。

简而言之,农业
使文明得以存在。

今天,地球上大约 40%
的面积是农田。

这些遍布世界各地的

农业用地
是我们都面临的全球难题的一部分

:未来,我们如何
为不断增长的人口中的每个成员

提供健康的饮食?

实现这一目标将需要

第二次
农业革命。

第一次农业革命

的特点
是扩张和剥削,


牺牲森林、野生动物和水为代价来养活人们,并

在此过程中破坏气候稳定。

这不是下一次的选择。

农业依赖于

具有可预测季节
和天气模式的稳定气候。

这意味着我们不能继续
扩大我们的农业用地,

因为这样做首先会破坏

使农业成为可能
的环境条件。

相反,下一次农业革命

将不得不
长期增加我们现有农田的产量,

同时保护生物多样性、
节约用水

、减少污染
和温室气体排放。

那么未来的农场会是什么样子呢?

这架无人机是监测下方农作物的舰队的一部分

农场看似杂乱无章,

但却是精心设计
的土地用途,将

农作物和牲畜
与野生栖息地交织在一起。

传统的耕作方法
清理了大片土地

并种植单一作物,

消灭野生动物


在此过程中排放大量温室气体。

这种方法旨在纠正这种损害。

与此同时,田间机器人团队在农作物之间移动,

以有针对性的剂量施肥。

在土壤内部,

数百个传感器收集
有关养分和水位的数据。

这些信息减少了
不必要的用水量,

并告诉农民他们应该在哪里施用
更多和更少的肥料,


不是通过在整个农场喷洒肥料来造成污染。

但未来的农场
不会全是传感器和机器人。 考虑到当地生态系统的细微差别,

这些技术
旨在帮助我们

以一种与环境相适应而不是与环境相冲突的方式生产食物

低成本的农业实践
也可以服务于同样的目标,

并且对许多农民来说更容易获得

事实上,许多这样的做法
今天已经在使用,

并且

随着越来越多的农民采用它们,它们的影响将越来越大。

在哥斯达黎加,

农民
成功地将农田与热带栖息地交织在一起,为

使该国的森林覆盖率翻倍做出了重大贡献。


为野生动物提供食物和栖息地,

以及这些农场

吸引的鸟类和昆虫的自然授粉和害虫防治

在恢复地球的同时生产食物。

在美国,

牧场主
在由本地物种组成的草原上饲养牛,

使用储存碳
和保护生物多样性的生产方法产生宝贵的蛋白质来源。

在孟加拉国、柬埔寨和尼泊尔,未来

水稻生产的新方法

可能会显着减少
温室气体排放。

大米
是三十亿人

的主食,是千家万户的主要生计
来源。

超过 90% 的
水稻种植在被淹的稻田中,

这些稻田消耗大量水

并释放出 11%
的甲烷年排放量

,占全球温室气体年排放总量的 1% 至 2%

通过试验新的水稻品种、

减少灌溉

和采用劳动密集型
的播种方式,

这些国家的农民

已经

在减少温室气体排放的同时增加了收入和作物产量。

在赞比亚,

许多组织
正在投资于当地特定的方法,

以提高作物产量、
减少森林损失

并改善当地农民的生计。

这些努力预计
将在未来几十年将作物产量

提高近四分之一

如果与
该地区打击森林砍伐的方法相结合,

它们可以使该国

转向一个有弹性、以气候为重点的
农业部门。

在印度,由于基础设施薄弱

,多达 40
% 的收获后粮食丢失或浪费

农民已经开始实施
太阳能冷藏胶囊

,帮助成千上万的农村农民
保存他们的农产品,

并成为可行的一部分
。 供应链。

需要所有这些方法,

从最高技术
到最低成本,

才能彻底改变农业。

高科技干预措施将扩大以

气候和保护为
导向的农业方法

,大型生产者将需要
投资实施这些技术。

同时,我们将不得不为小规模农民扩大
使用成本较低的方法

这种对未来农业的
愿景还需要全球

转向更多以植物为基础的饮食,

并大幅
减少粮食损失和浪费,

这两者都将
减轻土地压力

,并使农民能够
利用现有资源做更多事情。

如果我们优化
陆上和海上的粮食生产,

我们可以

在地球的环境范围内养活人类,

但误差范围非常小

,这需要我们今天拥有的农业用地进行前所未有的
全球合作

与协调