Is it possible to create a perfect vacuum Rolf Landua and Anais Rassat

The universe is bustling with matter
and energy.

Even in the vast apparent emptiness
of intergalactic space,

there’s one hydrogen atom per cubic meter.

That’s not the mention
a barrage of particles

and electromagnetic radiation

passing every which way from stars,
galaxies, and into black holes.

There’s even radiation left over
from the Big Bang.

So is there such thing as a total
absence of everything?

This isn’t just a thought experiment.

Empty spaces, or vacuums,
are incredibly useful.

Inside our homes,
most vacuum cleaners work

by using a fan to create a low-pressure
relatively empty area

that sucks matter in to fill the void.

But that’s far from empty.

There’s still plenty of matter
bouncing around.

Manufacturers rely on more thorough,
sealed vacuums

for all sorts of purposes.

That includes vacuum-packed food
that stays fresh longer,

and the vacuums inside early light bulbs
that protected filaments from degrading.

These vacuums are generally created
with some version

of what a vacuum cleaner does

using high-powered pumps that create
enough suction

to remove as many stray atoms as possible.

But the best of these industrial processes

tends to leave hundreds
of millions of atoms

per cubic centimeter of space.

That isn’t empty enough
for scientists who work on experiments,

like the Large Hadron Collider,

where particle beams need to circulate
at close to the speed of light

for up to ten hours without hitting
any stray atoms.

So how do they create a vacuum?

The LHC’s pipes are made of materials,
like stainless steel,

that don’t release any
of their own molecules

and are lined with a special coating
to absorb stray gases.

Raising the temperature
to 200 degrees Celsius

burns off any moisture,

and hundreds of vacuum pumps take
two weeks to trap enough gas and debris

out of the pipes for the collider’s
incredibly sensitive experiments.

Even with all this,

the Large Hadron Collider
isn’t a perfect vacuum.

In the emptiest places, there are still

about 100,000 particles
per cubic centimeter.

But let’s say an experiment like that
could somehow get every last atom out.

There’s still an unfathomably huge
amount of radiation all around us

that can pass right through
the walls.

Every second, about 50 muons
from cosmic rays,

10 million neutrinos coming directly
from the Big Bang,

30 million photons from the cosmic
microwave background,

and 300 trillion neutrinos
from the Sun pass through your body.

It is possible to shield
vacuum chambers with substances,

including water,

that absorb and reflect this radiation,

except for neutrinos.

Let’s say you’ve somehow removed
all of the atoms

and blocked all of the radiation.

Is the space now totally empty?

Actually, no.

All space is filled with what
physicists call quantum fields.

What we think of as subatomic particles,

electrons and photons and their relatives,

are actually vibrations
in a quantum fabric

that extends throughout the universe.

And because of a physical law called
the Heisenberg Principle,

these fields never stop oscillating,

even without any particles
to set off the ripples.

They always have some minimum fluctuation
called a vacuum fluctuation.

This means they have energy,
a huge amount of it.

Because Einstein’s equations tell us
that mass and energy are equivalent,

the quantum fluctuations in every
cubic meter of space

have an energy that corresponds
to a mass of about four protons.

In other words, the seemingly empty space
inside your vacuum

would actually weigh a small amount.

Quantum fluctuations have existed since
the earliest moments of the universe.

In the moments after the Big Bang,

as the universe expanded,

they were amplified and stretched out
to cosmic scales.

Cosmologists believe that these original
quantum fluctuations

were the seeds of everything
we see today:

galaxies and the entire large scale
structure of the universe,

as well as planets and solar systems.

They’re also the center of one of the
greatest scientific mysteries of our time

because according to the current theories,

the quantum fluctuations
in the vacuum of space

ought to have 120 orders of magnitude
more energy than we observe.

Solving the mystery of that missing energy

may entirely rewrite our understanding
of physics and the universe.

宇宙充满了物质
和能量。

即使在
银河系空间的巨大空旷中,

每立方米也有一个氢原子。

更不用说

从恒星、
星系到黑洞的一连串粒子和电磁辐射。

甚至还有大爆炸留下的辐射

那么,是否存在完全
没有一切的事情呢?

这不仅仅是一个思想实验。

空白空间或真空吸尘器
非常有用。

在我们的家中,
大多数真空吸尘器

通过使用风扇来创造一个低压
相对空旷的区域

,将物质吸入以填补空隙。

但这远非空无一物。

仍然有很多东西在
蹦蹦跳跳。

制造商依靠更彻底、更
密封的真空吸尘器

来实现各种目的。

这包括
保鲜时间更长的真空包装食品,

以及早期灯泡内的真空
,可防止灯丝降解。

这些真空通常

是由真空吸尘器

使用大功率泵产生的,该泵产生
足够的吸力

以去除尽可能多的杂散原子。

但这些工业过程中最好的

往往会在每立方厘米空间留下
数亿个原子

对于从事

大型强子对撞机等实验的科学家来说,这还不够空旷,

其中粒子束需要
以接近光速的速度循环

长达十小时而不会撞击
任何杂散原子。

那么他们如何创造真空呢?

LHC 的管道由
不锈钢等材料制成

,不会释放
任何自身的分子

,并内衬特殊涂层
以吸收杂散气体。

将温度升高
到 200 摄氏度会

烧掉所有水分

,数百个真空泵需要
两周时间才能从管道中捕获足够的气体和碎片

,以供对撞机
极其敏感的实验使用。

即使有这一切

,大型强子对撞机
也不是一个完美的真空。

在最空旷的地方,每立方厘米仍有

大约 10 万个颗粒

但是,假设这样的实验
可以以某种方式将最后一个原子取出来。

我们周围仍然有
大量的辐射

可以直接
穿过墙壁。

每秒大约有 50 个
来自宇宙射线的 μ 子、

1000 万个直接
来自大爆炸的中微子、

3000 万个来自宇宙
微波背景的光子

以及 300 万亿个
来自太阳的中微子穿过你的身体。

可以

吸收和反射这种辐射的物质(包括水)来屏蔽真空室,

但中微子除外。

假设您以某种方式移除了
所有原子

并阻挡了所有辐射。

空间现在完全是空的吗?

实际上,没有。

所有的空间都充满了
物理学家所说的量子场。

我们认为的亚原子粒子、

电子和光子及其亲属

,实际上

是延伸到整个宇宙的量子结构中的振动。

并且由于被称为海森堡原理的物理定律

这些场永远不会停止振荡,

即使没有任何粒子
来掀起涟漪。

它们总是有一些
称为真空波动的最小波动。

这意味着他们有能量,
数量巨大。

因为爱因斯坦的方程告诉
我们质量和能量是等价的,

所以每立方米空间中的量子涨落

具有对应
于大约四个质子质量的能量。

换句话说,真空吸尘器中看似空旷的空间

实际上重量很小。

量子涨落从
宇宙的最初时刻就已经存在。

在大爆炸之后的瞬间,

随着宇宙的膨胀,

它们被放大并延伸
到宇宙尺度。

宇宙学家认为,这些原始的
量子涨落

是我们今天所看到的一切事物的种子

星系和宇宙的整个大尺度
结构,

以及行星和太阳系。

它们也是
我们这个时代最大的科学谜团之一的中心,

因为根据目前的理论,

空间真空中的量子涨落

应该
比我们观察到的能量多 120 个数量级。

解开能量缺失之谜

可能会彻底改写我们
对物理学和宇宙的理解。