Could tissue engineering mean personalized medicine Nina Tandon

I’d like to show you a video of some of

the models I work with they’re all the

perfect size and they don’t have an

ounce of fat did I mention they’re

gorgeous and their scientific models as

you might have guessed I’m a tissue

engineer and this is a video of some of

the beating heart that I’ve engineered

in the lab and one day we hope that

these tissues can serve as replacement

parts for the human body but what I’m

going to tell you about today is how

these tissues make awesome models well

let’s think about the drug screening

process for a moment you go from drug

formulation lab testing animal testing

and then clinical trials which you might

call human testing before the drugs get

to mark it costs a lot of money a lot of

time and sometimes even when a drug hits

the market it acts in an unpredictable

way and actually hurts people and later

it fails the worse the consequences it

all boils down to two issues one humans

are not wrapped and two despite our

incredible similarities to one another

actually those tiny differences between

you and I have huge impacts with how we

metabolize drugs and how those drugs

affect us so what if we had better

models in the lab that could not only

mimic us better than rats but also

reflect our diversity let’s see how we

can do it with tissue engineering one of

the key technologies that’s really

important is what’s called induced

pluripotent stem cells they were

developed in Japan pretty recently okay

induced pluripotent stem cells they’re a

lot like embryonic stem cells except

without the controversy we induced cells

okay say skin cells by adding a few

genes to them culturing them and then

harvesting them so there’s skin cells

that can be tricked kind of like

cellular amnesia into an embryonic state

so without the controversy that’s cool

thing number one cool thing number two

you can grow any type of tissue out of

them brain heart liver you get the

picture but out of yourself so we can

make a model of your heart your brain on

a chip

generating tissues of predictable

density and behaviors the second piece

and will be really key towards getting

these models to be adopted for drug

discovery and this is a schematic of a

bioreactor we’re developing in our lab

to help engineer tissues in a more

modular scalable way going forward

imagine a massively parallel version of

this with thousands of pieces of human

tissue it would be like having a

clinical trial on a chip but another

thing about these induced pluripotent

stem cells is that if we take some skin

cells let’s say from people with a

genetic disease and we engineer tissues

out of them we can actually use tissue

engineering techniques to generate

models of those diseases in the lab

here’s an example from kevin egan slab

at harvard he generated neurons from

these induced pluripotent stem cells

from patients who have Lou Gehrig’s

disease and he differentiated them into

neurons and what’s amazing is that these

neurons also show symptoms of the

disease so with disease models like

these we can fight back faster than ever

before and understand the disease better

than ever before and maybe discover

drugs even faster this is another

example of patient-specific stem cells

that were engineered from someone with

retinitis pigmentosa this is a

degeneration of the retina it’s a

disease that runs in my family and we

really hope that sells like these will

help us find a cure so some people think

that these models sound well and good

but asked will are these really as good

as the rat the rat is an entire organism

after all with interacting networks of

organs a drug for the heart can get

metabolized in the liver and some of the

byproducts may be stored in the fat

don’t you miss all that with these

tissue engineered models well this is

another trend in the field by combining

tissue engineering techniques with micro

fluidics the field is actually evolving

towards just that a model of the entire

ecosystem of the body complete with

multiple organ systems to be able to

test how a drug you might take for your

blood pressure might affect your liver

or an antidepressant might affect your

heart these systems are really hard to

build but we’re just starting to be able

to get there and so watch out

but that’s not even all of it because

once a drug is approved tissue

engineering techniques can actually help

us develop more personalized treatments

this is an example that you might care

about someday and I hope you never do

because imagine if you ever get that

call that gives you that bad news that

you might have cancer wouldn’t you

rather test to see if those cancer drugs

you’re going to take are going to work

on your cancer this is an example from

Karen Berg slab where they’re using

inkjet technologies to print breast

cancer cells and study its progressions

and treatments and some of our

colleagues at Tufts are mixing models

like these with tissue engineered bone

to see House cancer might spread from

one part of the body to the next and you

can imagine those kinds of multi tissue

chips to be the next generation of these

kinds of studies and so thinking about

the models that we’ve just discussed you

can see going forward that tissue

engineering is actually poised to help

revolutionize drug screening at every

single step of the path disease models

making for better drug formulations

massively parallel human tissue models

helping to revolutionize lab testing

reduce animal testing and human testing

and clinical trials an individualized

therapies that disrupts what we even

consider to be a market at all

essentially we’re dramatically speeding

up that feedback between developing a

molecule and learning about how it acts

in the human body our process for doing

this isn’t centrally transforming

biotechnology and pharmacology into an

information technology helping us

discover and evaluate drugs faster more

cheaply and more effectively gives new

meaning to models against animal testing

doesn’t it thank you

you

我想给你看一段

我合作过的模特的视频,它们的

尺寸都很完美,而且

没有一盎司的脂肪

我是一名组织

工程师,这是我在实验室中设计的一些心脏跳动的视频,有

一天我们希望

这些组织可以

作为人体的替代部件,但我

要告诉 今天你要讲的是

这些组织如何很好地制作出令人敬畏的模型

让我们考虑一下药物筛选

过程,从药物

配方实验室测试动物测试

到临床试验,你可能会

称之为人体测试,然后药物

才能标记它花费很多 很多

时间,有时甚至当一种药物进入

市场时,它会以一种不可预测的方式发挥作用

,实际上会伤害人们,后来

它失败了,后果更糟,这

一切都归结为两个问题,一个是

人类没有被包裹,另一个是尽管我们

令人难以置信

实际上,你和我之间的那些微小差异

对我们如何

代谢药物以及这些药物如何

影响我们产生了巨大的影响,如果我们

在实验室中有更好的模型,不仅可以

比老鼠更好地模仿我们,还可以

反映我们的多样性 让我们看看我们

如何通过组织工程来做到这

一点 真正重要的关键技术之一

是所谓的诱导

多能干细胞 它们是

在日本开发的,它们是最近在日本开发的 好吧

诱导多能干细胞 它们

很像胚胎干细胞,除了

没有争议 我们诱导细胞,

好吧,比如说皮肤细胞,通过向它们添加一些

基因来培养它们,然后

收获它们,这样皮肤细胞

就可以被欺骗,就像

细胞失忆症进入胚胎状态,

所以没有争议,这是很酷的

事情第一很酷的事情第二

你可以用它们长出任何类型的

组织脑心肝你得到了

图片但你自己所以我们可以

将您的心脏模型您的大脑

放在芯片上

生成可预测

密度和行为的组织第二部分

,这将是让

这些模型被用于药物

发现的关键,这是

我们正在开发的生物反应器的示意图 实验室

以一种更

模块化、可扩展的方式帮助工程组织向前发展

想象一个

具有数千块人体

组织的大规模并行版本,这就像

在芯片上进行临床试验,但

关于这些诱导多

能干细胞的另一件事是,如果

我们从患有遗传疾病的人身上提取一些皮肤细胞

,然后我们用它们设计组织 我们实际上可以使用组织

工程技术

在实验室中生成这些疾病的模型 这

是哈佛大学的 kevin egan slab 的一个例子,他从这些细胞中生成了神经元

从患有 Lou Gehrig 病的患者身上诱导出多能干细胞

,他将它们分化成

神经元,令人惊奇的是 由于这些

神经元也显示出

疾病的症状,因此有了这样的疾病模型,

我们可以比以往任何时候都更快地进行反击,比以往任何时候都

更好地了解疾病

,甚至可能

更快地发现药物 这是经过改造

的患者特异性干细胞的另一个例子

来自患有

视网膜色素变性的人 这

是视网膜退化 这是一种

在我家中流行的疾病,我们

真的希望像这样的销售能

帮助我们找到治愈方法,所以有些人

认为这些模型听起来很好,

但被问到这些是 真的和

老鼠一样好老鼠毕竟是一个完整的有机体

,器官网络相互作用

组织工程模型很好这

是该领域的另一个趋势,通过将

组织工程技术与微

流体相结合,该领域实际上

正在朝着 一个

完整的身体生态系统模型,包含

多个器官系统,以便能够

测试您可能服用的

血压药物如何影响您的肝脏

或抗抑郁药可能如何影响您的

心脏这些系统真的很难

建立,但我们 刚刚开始

能够到达那里,所以要小心,

但这还不是全部,因为

一旦一种药物获得批准,组织

工程技术实际上可以帮助

我们开发更个性化的治疗方法,

这是一个你有一天可能会关心的例子

,我希望 你永远不会这样做,

因为想象一下,如果你

接到一个电话,告诉你

你可能患有癌症的坏消息,你会不会

宁愿测试

一下你要服用的那些抗癌药物是否

对你的癌症有效,这是一个 来自

Karen Berg 平板的示例,他们使用

喷墨技术打印

乳腺癌细胞并研究其进展

和治疗方法,我们

在 Tufts 的一些同事正在混合

这些模型 用组织工程骨

来观察 House 癌症可能会从

身体的一个部位扩散到下一个部位,你

可以想象这些多组织

芯片将成为这类

研究的下一代,所以想想

我们刚刚建立的模型 讨论过你

可以看到,组织

工程实际上已经准备好在路径

的每一步帮助彻底改变药物筛选

疾病模型

制作更好的药物配方

大规模平行人体组织模型

有助于彻底改变实验室测试

减少动物测试和人体测试

和临床试验 一种个性化

疗法,它彻底颠覆了我们甚至

认为是一个市场

药理学成为一种

信息技术,帮助我们

更快地发现和评估药物 更

便宜、更有效地为

动物试验模型赋予了新的意义

不是吗谢谢你