An evolutionary perspective on human health and disease Lara Durgavich

Transcriber: Ivana Korom
Reviewer: Krystian Aparta

When I was approximately
nine weeks pregnant with my first child,

I found out I’m a carrier
for a fatal genetic disorder

called Tay-Sachs disease.

What this means

is that one of the two copies
of chromosome number 15

that I have in each of my cells

has a genetic mutation.

Because I still have
one normal copy of this gene,

the mutation doesn’t affect me.

But if a baby inherits this mutation
from both parents,

if both copies of this particular gene
don’t function properly,

it results in Tay-Sachs,

an incurable disease

that progressively shuts down
the central nervous system

and causes death by age five.

For many pregnant women,
this news might produce a full-on panic.

But I knew something
that helped keep me calm

when I heard this bombshell
about my own biology.

I knew that my husband,

whose ancestry isn’t Eastern
European Jewish like mine,

had a very low likelihood

of also being a carrier
for the Tay-Sachs mutation.

While the frequency of heterozygotes,

individuals who have
one normal copy of the gene

and one mutated copy,

is about one out of 27 people
among Jews of Ashkenazi descent, like me,

in most populations,

only one in about 300 people
carry the Tay-Sachs mutation.

Thankfully, it turned out I was right
not to worry too much.

My husband isn’t a carrier,

and we now have two beautiful
and healthy children.

As I said,

because of my Jewish background,

I was aware of the unusually high rate
of Tay-Sachs in the Ashkenazi population.

But it wasn’t until a few years
after my daughter was born

when I created and taught a seminar
in evolutionary medicine at Harvard,

that I thought to ask,

and discovered a possible answer to,

the question “why?”

The process of evolution
by natural selection

typically eliminates harmful mutations.

So how did this defective gene
persist at all?

And why is it found
at such a high frequency

within this particular population?

The perspective of evolutionary medicine
offers valuable insight,

because it examines how and why

humans' evolutionary past
has left our bodies vulnerable

to diseases and other problems today.

In doing so,

it demonstrates that natural selection
doesn’t always make our bodies better.

It can’t necessarily.

But as I hope to illustrate
with my own story,

understanding the implications
of your evolutionary past

can help enrich your personal health.

When I started investigating Tay-Sachs
using an evolutionary perspective,

I came across an intriguing hypothesis.

The unusually high rate
of the Tay-Sachs mutation

in Ashkenazi Jews today

may relate to advantages
the mutation gave this population

in the past.

Now I’m sure some of you are thinking,

“I’m sorry, did you just suggest
that this disease-causing mutation

had beneficial effects?”

Yeah, I did.

Certainly not for individuals
who inherited two copies of the mutation

and had Tay-Sachs.

But under certain circumstances,

people like me,

who had only one faulty gene copy,

may have been more likely
to survive, reproduce

and pass on their genetic material,

including that mutated gene.

This idea that there can be circumstances
in which heterozygotes are better off

might sound familiar to some of you.

Evolutionary biologists
call this phenomenon

heterozygote advantage.

And it explains, for example,

why carriers of sickle cell anemia

are more common among
some African and Asian populations

or those with ancestry
from these tropical regions.

In these geographic regions,
malaria poses significant risks to health.

The parasite that causes malaria, though,

can only complete its life cycle
in normal, round red blood cells.

By changing the shape
of a person’s red blood cells,

the sickle cell mutation
confers protection against malaria.

People with the mutation
aren’t less likely to get bitten

by the mosquitoes
that transmit the disease,

but they are less likely to get sick
or die as a result.

Being a carrier for sickle cell anemia

is therefore the best
possible genetic option

in a malarial environment.

Carriers are less susceptible to malaria,

because they make some
sickled red blood cells,

but they make enough
normal red blood cells

that they aren’t negatively affected
by sickle cell anemia.

Now in my case,

the defective gene I carry
won’t protect me against malaria.

But the unusual prevalence
of the Tay-Sachs mutation

in Ashkenazi populations

may be another example
of heterozygote advantage.

In this case, increasing
resistance to tuberculosis.

The first hint of a possible relationship
between Tay-Sachs and tuberculosis

came in the 1970s,

when researchers published data

showing that among
the Eastern European-born grandparents

of a sample of American Ashkenazi
children born with Tay-Sachs,

tuberculosis was an exceedingly
rare cause of death.

In fact, only one
out of these 306 grandparents

had died of TB,

despite the fact
that in the early 20th century,

TB caused up to 20 percent of deaths
in large Eastern European cities.

Now on the one hand,
these results weren’t surprising.

People had already recognized

that while Jews and non-Jews in Europe

had been equally likely
to contract TB during this time,

the death rate among non-Jews
was twice as high.

But the hypothesis
that these Ashkenazi grandparents

had been less likely to die of TB

specifically because at least some of them
were Tay-Sachs carriers

was novel and compelling.

The data hinted

that the persistence
of the Tay-Sachs mutation

among Ashkenazi Jews

might be explained by the benefits
of being a carrier

in an environment
where tuberculosis was prevalent.

You’ll notice, though,

that this explanation
only fills in part of the puzzle.

Even if the Tay-Sachs mutation persisted

because carriers
were more likely to survive,

reproduce and pass on
their genetic material,

why did this resistance
mechanism proliferate

among the Ashkenazi
population in particular?

One possibility is that the genes
and health of Eastern European Jews

were affected not simply by geography

but also by historical
and cultural factors.

At various points in history

this population was forced to live
in crowded urban ghettos

with poor sanitation.

Ideal conditions for the tuberculosis
bacterium to thrive.

In these environments,
where TB posed an especially high threat,

those individuals who were not carriers
of any genetic protection

would have been more likely to die.

This winnowing effect

together with a strong
cultural predilection

for marrying and reproducing
only within the Ashkenazi community,

would have amplified
the relative frequency of carriers,

boosting TB resistance

but increasing the incidence of Tay-Sachs
as an unfortunate side effect.

Studies from the 1980s support this idea.

The segment of the American
Jewish population

that had the highest frequency
of Tay-Sachs carriers

traced their descent

to those European countries
where the incidence of TB was highest.

The benefits of being
a Tay-Sachs carrier were highest

in those places where the risk
of death due to TB was greatest.

And while it was unclear
in the 1970s or ’80s

how exactly the Tay-Sachs mutation
offered protection against TB,

recent work has identified

how the mutation increases
cellular defenses against the bacterium.

So heterozygote advantage can help explain

why problematic versions of genes
persist at high frequencies

in certain populations.

But this is only one of the contributions
evolutionary medicine can make

in helping us understand human health.

As I mentioned earlier,

this field challenges the notion

that our bodies should have gotten
better over time.

An idea that often stems
from a misconception

of how evolution works.

In a nutshell,

there are three basic reasons
why human bodies,

including yours and mine,

remain vulnerable to diseases
and other health problems today.

Natural selection acts slowly,

there are limitations
to the changes it can make

and it optimizes for reproductive success,

not health.

The way the pace of natural selection
affects human health

is probably most obvious

in people’s relationship
with infectious pathogens.

We’re in a constant arms race
with bacteria and viruses.

Our immune system is continuously evolving
to limit their ability to infect,

and they are continuously developing ways
to outmaneuver our defenses.

And our species
is at a distinct disadvantage

due to our long lives
and slow reproduction.

In the time it takes us
to evolve one mechanism of resistance,

a pathogenic species
will go through millions of generations,

giving it ample time to evolve,

so it can continue
using our bodies as a host.

Now what does it mean
that there are limitations

to the changes natural selection can make?

Again, my examples
of heterozygote advantage

offer a useful illustration.

In terms of resisting TB and malaria,

the physiological effects of the Tay-Sachs
and sickle cell anemia mutations

are good.

Taken to their extremes, though,

they cause significant problems.

This delicate balance
highlights the constraints

inherent in the human body,

and the fact that the evolutionary process

must work with the materials
already available.

In many instances,

a change that improves
survival or reproduction

in one sense

may have cascading effects
that carry their own risk.

Evolution isn’t an engineer
that starts from scratch

to create optimal solutions
to individual problems.

Evolution is all about compromise.

It’s also important to remember,

when considering
our bodies' vulnerabilities,

that from an evolutionary perspective,

health isn’t the most important currency.

Reproduction is.

Success is measured
not by how healthy an individual is,

or by how long she lives,

but by how many copies of her genes
she passes to the next generation.

This explains why a mutation

like the one that causes
Huntington’s disease,

another degenerative
neurological disorder,

hasn’t been eliminated
by natural selection.

The mutation’s detrimental effects

usually don’t appear until after
the typical age of reproduction,

when affected individuals
have already passed on their genes.

As a whole,

the biomedical community
focuses on proximate explanations

and uses them to shape
treatment approaches.

Proximate explanations
for health conditions

consider the immediate factors:

What’s going on inside
someone’s body right now

that caused a particular problem.

Nearsightedness, for example,

is usually the result of changes
to the shape of the eye

and can be easily corrected with glasses.

But as with the genetic
conditions I’ve discussed,

a proximate explanation
only provides part of the bigger picture.

Adopting an evolutionary perspective

to consider the broader question
of why do we have this problem

to begin with –

what evolutionary medicine calls
the ultimate perspective –

can give us insight
into nonimmediate factors

that affect our health.

This is crucial,

because it can suggest ways
by which you can mitigate your own risk

or that of friends and family.

In the case of nearsightedness,

some research suggests

that one reason it’s becoming
more common in some populations

is that many people today,

including most of us in this room,

spend far more time reading, writing

and engaging with various types of screen

than we do outside, interacting
with the world on a bigger scale.

In evolutionary terms,
this is a recent change.

For most of human evolutionary history,

people used their vision
across a broader landscape,

spending more time in activities
like hunting and gathering.

The increase in recent years
in what’s termed “near work,”

focusing intensely on objects
directly in front of us

for long periods of time,

strains our eyes differently

and affects the physical shape of the eye.

When we put all these pieces together,

this ultimate explanation
for nearsightedness –

that environmental and behavioral change
impact the way we use our eyes –

helps us better understand
the proximate cause.

And an inescapable conclusion emerges –

my mother was right,

I probably should have spent
a little less time with my nose in a book.

This is just one
of many possible examples.

So the next time you or a loved one
are faced with a health challenge,

whether it’s obesity or diabetes,

an autoimmune disorder,

or a knee or back injury,

I encourage you to think

about what an ultimate
perspective can contribute.

Understanding that your health

is affected not just by what’s going on
in your body right now,

but also by your genetic inheritance,
culture and history,

can help you make more informed decisions

about predispositions,
risks and treatments.

As for me,

I won’t claim that an evolutionary
medicine perspective

has always directly
influenced my decisions,

such as my choice of spouse.

It turned out, though,

that not following
the traditional practice

of marrying within the Jewish community

ultimately worked in my favor genetically,

reducing the odds of me
having a baby with Tay-Sachs.

It’s a great example of why
not every set of Ashkenazi parents

should hope that their daughter
marries “a nice Jewish boy.”

(Laughter)

(Audience) Woo-hoo!

More importantly, though,

the experience of learning
about my own genes

taught me to think differently
about health in the long run,

and I hope sharing my story
inspires you to do the same.

Thank you.

(Applause)

抄写员:Ivana Korom
审稿人:Krystian Aparta


我怀第一个孩子大约 9 周时,

我发现自己是一种

称为泰萨克斯病(Tay-Sachs disease)的致命遗传疾病的携带者。

意味着我在每个细胞中拥有的两个
15 号染色体拷贝

中的一个

具有基因突变。

因为我仍然有
这个基因的一个正常副本,

所以突变不会影响我。

但是,如果婴儿从父母双方那里继承了这种突变

如果这个特定基因的两个拷贝
都不能正常发挥作用,

就会导致 Tay-Sachs,这

是一种无法治愈的疾病

,它会逐渐
关闭中枢神经系统

并导致五岁时死亡。

对于许多孕妇来说,
这个消息可能会产生全面的恐慌。

但是

当我听到这个
关于我自己生物学的重磅炸弹时,我知道一些让我保持冷静的东西。

我知道我丈夫

的血统不是
像我这样的东欧犹太人,

他也不太可能

成为 Tay-Sachs 突变的携带者。

虽然像我这样的德系犹太人血统的 27 人中,杂合子的频率约为 1

人,即拥有
一个正常基因拷贝

和一个突变拷贝的个体

,但

在大多数人群中,

大约 300 人中只有一个
携带 Tay- 萨克斯突变。

谢天谢地,事实证明我
不用太担心是对的。

我丈夫不是携带者

,我们现在有两个
漂亮健康的孩子。

正如我所说,

由于我的犹太背景,

我意识到德系犹太人
中泰萨克斯人的比例异常高。

但直到
我女儿出生几年后,

当我在哈佛创建并教授
进化医学研讨会时

,我才想到要问“为什么?”这个问题

并找到了一个可能的答案

。 自然选择

的进化过程

通常会消除有害的突变。

那么这个有缺陷的基因是如何
持续存在的呢?

为什么在这个特定人群中发现它的
频率如此之高

进化医学的观点
提供了宝贵的见解,

因为它研究了

人类的进化历史
如何以及为何使我们的身体

在今天容易受到疾病和其他问题的影响。

这样做,

它表明自然选择
并不总是让我们的身体变得更好。

不一定可以。

但正如我希望
用我自己的故事来说明的那样,

了解
你过去进化的

影响有助于丰富你的个人健康。

当我开始从进化的角度研究 Tay-Sachs
时,

我遇到了一个有趣的假设。

今天德系犹太人中异常高
的 Tay-Sachs 突变率

可能与过去
突变给这个人群

带来的优势有关。

现在我敢肯定你们中的一些人在想,

“对不起,你刚才是不是
说这种致病突变

有有益的影响?”

是啊,我做了。

当然,对于
那些遗传了两份突变

并患有 Tay-Sachs 的人来说,情况肯定不是这样。

但在某些情况下

,像我

这样只有一个错误基因拷贝的人

可能更有
可能生存、繁殖

和传递他们的遗传物质,

包括那个突变的基因。

在某些情况下
,杂合子的情况

可能会更好,你们中的一些人可能听起来很熟悉。

进化生物学家
称这种现象为

杂合子优势。

例如,它解释了

为什么镰状细胞性贫血的携带者


一些非洲和亚洲人群


这些热带地区血统的人群中更为常见。

在这些地理区域,
疟疾对健康构成重大风险。

然而,导致疟疾的寄生虫

只能
在正常的圆形红细胞中完成其生命周期。

通过改变
人的红细胞形状

,镰状细胞突变可以
预防疟疾。

携带这种突变的人
被传播疾病的蚊子叮咬的可能性并没有降低

但他们因此生病
或死亡的可能性也更低。 因此,

作为镰状细胞性贫血的携带者

是疟疾环境中最好
的遗传选择

携带者不太容易感染疟疾,

因为它们会产生一些
镰状红细胞,

但它们会产生足够的
正常红细胞

,因此不会
受到镰状细胞性贫血的负面影响。

现在就我而言,

我携带的缺陷基因
无法保护我免受疟疾的侵害。

但德系人群
中 Tay-Sachs 突变的异常流行

可能是
杂合子优势的另一个例子。

在这种情况下,增加
对结核病的抵抗力。

Tay-Sachs 与肺结核之间可能存在关系的第一个迹象

出现在 1970 年代,

当时研究人员公布的数据

显示,在出生于 Tay-Sachs

的美国德系儿童样本的东欧出生的祖父母中

肺结核是一种极其
罕见的原因 死亡。

事实上,
这 306 名祖父母中

只有一名死于结核病,

尽管在 20 世纪初,

结核病导致了东欧大城市高达 20% 的
死亡。

现在,一方面,
这些结果并不令人惊讶。

人们已经认识到

,虽然欧洲的犹太人和非犹太人在

此期间感染结核病的可能性相同,

但非犹太人的死亡率
是其两倍。

但是
,这些德系祖父母

死于结核病的可能性较小,

因为至少他们
中的一些人是 Tay-Sachs 携带者

,这一假设是新颖且令人信服的。

数据

暗示,德系犹太人
中 Tay-Sachs 突变

的持续存在

可能是

因为在结核病流行的环境中成为携带者的好处。

但是,您会注意到,

这种解释
仅填补了部分难题。

即使 Tay-Sachs 突变持续存在,

因为
携带者更有可能生存、

繁殖和传递
他们的遗传物质,

为什么这种抗性
机制特别

在德系人群中激增

一种可能性是,
东欧犹太人的基因和健康

不仅受到地理

因素的影响,还受到历史和文化因素的影响。

在历史的不同时期,

这些人口被迫生活
在拥挤的城市

贫民区,卫生条件差。

结核菌繁殖的理想条件。

在这些环境中
,结核病构成了特别高的威胁,

那些不是
任何遗传保护携带者

的人更有可能死亡。

这种风选效应

以及

仅在德系社区内结婚和繁殖的强烈文化偏好,

将放大
携带者的相对频率,

提高结核病抵抗力,

但不幸的副作用是增加泰萨克斯病的发病率

1980 年代的研究支持这一观点。

拥有最高
频率 Tay-Sachs 携带者的美国犹太人群体可以

追溯到

那些结核病发病率最高的欧洲国家。 在因结核病死亡的风险

最高的地方,成为 Tay-Sachs 携带者的好处

最高。

虽然
在 1970 年代或 80 年代

尚不清楚 Tay-Sachs 突变究竟如何
提供对结核病的保护,但

最近的工作已经确定

了该突变如何增加
细胞对细菌的防御。

因此杂合子优势可以帮助解释

为什么有问题的基因版本在某些人群中
以高频率持续存在

但这只是
进化医学

在帮助我们了解人类健康方面所能做出的贡献之一。

正如我之前提到的,

这个领域挑战

了我们的身体应该
随着时间的推移而变得更好的观念。

这个想法通常
源于对

进化如何运作的误解。

简而言之,

包括您和我的人体在内的人体今天

仍然容易受到疾病
和其他健康问题的影响有三个基本原因。

自然选择行动缓慢,

它可以做出的改变有局限性

,它优化了繁殖成功,

而不是健康。

自然选择的步伐
影响人类健康的

方式可能

在人们
与传染性病原体的关系中最为明显。

我们一直在
与细菌和病毒进行军备竞赛。

我们的免疫系统在不断发展
以限制它们的感染能力

,它们也在不断开发出方法
来战胜我们的防御。 由于我们的寿命长

且繁殖缓慢,我们的
物种处于明显的劣势


我们进化出一种抵抗机制的时间里,

一个致病物种
将经历数百万代,

给它充足的进化时间,

因此它可以继续
以我们的身体为宿主。

那么

自然选择所能做出的改变是有限度的,这意味着什么呢?

同样,我
的杂合子优势示例

提供了一个有用的说明。

在抗结核和疟疾方面,

Tay-Sachs
和镰状细胞性贫血突变的生理作用

是好的。

然而,极端情况下,

它们会导致严重的问题。

这种微妙的平衡
突出

了人体固有的限制,

以及进化过程

必须使用现有材料这一事实

在许多情况下,

从某种意义上改善
生存或繁殖

的变化

可能会产生连锁效应
,并带来风险。

Evolution
不是从零开始

为个别问题创建最佳解决方案的工程师

进化就是妥协。

同样重要的是要记住,

在考虑
我们身体的脆弱性时

,从进化的角度来看,

健康并不是最重要的货币。

繁殖是。

衡量成功的标准
不是一个人的健康程度,

也不是她的寿命,

而是
她传递给下一代的基因拷贝数。

这就解释了为什么

像导致
亨廷顿氏病(

另一种退行性
神经系统疾病)

的突变没有
被自然选择消除。

突变的有害影响

通常
在典型的繁殖年龄之后才会出现,此时

受影响的个体
已经传递了他们的基因。

作为一个整体

,生物医学界
专注于近似解释,

并使用它们来塑造
治疗方法。

对健康状况的近似解释

考虑了直接因素:

现在某人体内

发生了什么导致特定问题。

例如,近视

通常
是眼睛形状变化的结果

,可以通过眼镜轻松矫正。

但就像
我讨论过的遗传条件一样,

一个近似的解释
只提供了更大图景的一部分。

采用进化的观点

来考虑更广泛的问题
,即为什么我们

首先会遇到这个问题

——进化医学
称之为终极观点——

可以让我们深入了解

影响我们健康的非直接因素。

这是至关重要的,

因为它可以建议
您减轻自己

或朋友和家人风险的方法。

就近视而言,

一些研究

表明,近视
在某些人群中变得越来越普遍的一个原因

是,今天的许多人,

包括我们在这个房间里的大多数人,

花在阅读、写作

和使用各种类型屏幕上的时间

比我们多得多 在外面,
在更大范围内与世界互动。

从进化的角度来看,
这是最近的变化。

在人类进化史的大部分时间里,

人们
在更广阔的环境中使用他们的视野,

将更多的时间花在
狩猎和采集等活动上。

近年来
,所谓的“近距离工作”的增加,长时间

集中
在我们面前的物体上

,使

我们的眼睛以不同的方式拉伤

并影响眼睛的物理形状。

当我们把所有这些部分放在一起时,

这种
对近视的最终解释

——环境和行为变化会
影响我们使用眼睛的方式——

有助于我们更好地理解近视
的原因。

一个不可避免的结论出现了——

我妈妈是对的,

我可能应该
少花一点时间在书本上。

这只是
众多可能的例子之一。

因此,下次当您或您所爱的
人面临健康挑战时,

无论是肥胖症或糖尿病、

自身免疫性疾病,

还是膝盖或背部受伤,

我鼓励您

思考终极
视角可以做出哪些贡献。

了解您的健康不仅受当前身体状况

的影响

还受遗传遗传、
文化和历史的影响

,有助于您

就易感性、
风险和治疗做出更明智的决定。

至于我,

我不会声称进化
医学的观点

一直直接
影响我的决定,

比如我对配偶的选择。

然而,事实证明,

不遵循

在犹太社区内结婚的传统习俗

最终在基因上对我有利,

降低了我
与 Tay-Sachs 生孩子的几率。

这是一个很好的例子,说明为什么
不是每对德系父母

都希望他们的女儿
嫁给“一个好犹太男孩”。

(笑声)

(观众)呜呼!

不过,更重要的是,

了解自己基因的经历

教会了我
从长远来看对健康有不同的看法

,我希望分享我的故事能
激励你做同样的事情。

谢谢你。

(掌声)