How did teeth evolve Peter S. Ungar

You may take them for granted,
but your teeth are a marvel.

They break up all your food
over the course of your life,

while being strong enough
to withstand breakage themselves.

And they’re formed using
only the raw materials

from the food they grind down
in the first place.

What’s behind their impressive strength?

Teeth rely on an ingenious structure
that makes them both hard and tough.

Hardness can be thought of as the ability
to resist a crack from starting,

while toughness is what stops
the crack from spreading

Very few materials have both properties.

For instance, glass is hard but not tough,

while leather is tough but not hard.

Teeth manage both by having two layers:

a hard external cap of enamel, made up
almost entirely of a calcium phosphate,

and beneath it,
a tougher layer of dentin,

partly formed from organic fibers
that make it flexible.

This amazing structure is created
by two types of cells:

ameloblasts that secrete enamel

and odontoblasts that secrete dentin.

As they form teeth,
odontoblasts move inward,

while ameloblasts move out
and slough off when they hit the surface.

For enamel, this process produces long,
thin strands,

each about 60 nanometers in diameter.

That’s one one-thousandth
the width of a human hair.

Those are bundled into rods,
packed together,

tens of thousands per square millimeter,

to form the shield-like enamel layer.

Once this process is finished,
your enamel can’t repair itself again

because all the cells
that make it are lost,

so we’re lucky that enamel
can’t be easily destroyed.

Odontoblasts use a more complex process,
but unlike ameloblasts, they stick around,

continuing to secrete dentin
throughout your life.

Despite the differences in teeth
across the mammalian order,

the underlying process of tooth growth
is the same whether it’s for lions,

kangaroos,

elephants,

or us.

What changes is how nature sculpts
the shape of the tooth,

altering the folding and growth patterns

to suit the distinct diets
of different species.

Cows have flat molar teeth with parallel
ridges for grinding tough grasses.

Cats have sharp crested molars,
like blades, for shearing meat and sinew.

Pigs have blunt, thick ones,
useful for crushing hard roots and seeds.

The myriad molars of modern mammals

can be traced back to a common form
called “tribosphenic,"

which first appeared
during the dinosaur age.

In the 19th Century,
paleontologist Edward Drinker Cope

developed the basic model
for how this form evolved.

He hypothesized that
it started with a cone-like tooth,

as we see in many fishes,
amphibians, and reptiles.

Small cusps were then added,
so the tooth had three in a row,

aligned front to back,
and connected by crests.

Over time, the cusps were pushed out
of line to make triangular crowns.

Adjacent teeth formed a continuous
zigzag of crests for slicing and dicing.

A low shelf then formed
at the back of each set of teeth,

which became a platform for crushing.

As Cope realized, the tribosphenic molar
served as the jumping-off point

for the radiation of specialized
forms to follow,

each shaped by evolutionary needs.

Straighten the crests
and remove the shelf,

and you’ve got the conveniently
bladed teeth of cats and dogs.

Remove the front cusp, raise the shelf,
and you’ve got our human molars.

A few additional tweaks get you
a horse or cow tooth.

Some details in Cope’s intuitive
hypothesis proved wrong.

But in the fossil record,

there are examples of teeth
that look just as he predicted

and we can trace the molars of all living
mammals back to that primitive form.

Today, the ability to consume
diverse forms of food

enables mammals to survive in habitats

ranging from mountain peaks
and ocean depths

to rainforests and deserts.

So the success of our biological class
is due in no small measure

to the remarkable strength
and adaptability

of the humble mammalian molar.

你可能认为它们是理所当然的,
但你的牙齿是一个奇迹。

它们会
在您的一生中分解您所有的食物,

同时它们的强度
足以承受破损。

而且它们是仅使用最初

研磨的食物中的原材料制成
的。

他们令人印象深刻的实力背后是什么?

牙齿依赖于一种巧妙的结构
,使它们既坚硬又坚韧。

硬度可以被认为是
从一开始就抵抗裂纹的能力,

而韧性是
阻止裂纹扩展的能力

很少有材料具有这两种特性。

比如玻璃硬而不硬

,皮革硬而不硬。

牙齿通过两层来管理这两者:

一个坚硬的牙釉质外层,
几乎完全由磷酸钙组成

,在它下面是
一层更坚韧的牙本质,

部分由有机纤维形成
,使其具有柔韧性。

这种惊人的结构是
由两种类型的细胞产生的

:分泌牙釉质的成釉细胞

和分泌牙本质的成牙本质细胞。

当它们形成牙齿时,
成牙本质细胞向内移动,而成

釉细胞
在接触表面时向外移动并脱落。

对于搪瓷,这个过程产生细长的
细线,

每条直径约 60 纳米。


是人类头发宽度的千分之一。

这些被捆绑成棒状,
包装在一起,

每平方毫米数万个

,形成盾状搪瓷层。

一旦这个过程完成,
你的牙釉质就无法再次自我修复,

因为制造它的所有细胞都丢失了,

所以我们很幸运,牙釉质
不容易被破坏。

成牙本质细胞使用一个更复杂的过程,
但与成釉细胞不同的是,它们会一直存在,

在您的一生中继续分泌牙本质。

尽管哺乳动物的牙齿存在
差异,


无论是狮子、

袋鼠、

大象

还是我们,牙齿生长的基本过程都是相同的。

改变的是大自然如何
塑造牙齿的形状,

改变折叠和生长模式

以适应
不同物种的不同饮食。

奶牛有扁平的臼齿和平行的
脊,用于磨碎坚硬的草。

猫的臼齿
像刀片一样锋利,用于剪肉和筋腱。

猪有钝而厚的,
用于压碎坚硬的根和种子。

现代哺乳动物的无数臼齿

可以追溯到一种
叫做“tribosphenic”的常见形式,

这种形式首先出现
在恐龙时代。

在 19 世纪,
古生物学家 Edward Drinker Cope

开发了
这种形式如何进化的基本模型。

他假设
它 一开始有一个圆锥状的牙齿,

就像我们在许多鱼类、
两栖动物和爬行动物

身上看到的那样。然后添加了小尖牙,
因此牙齿连续三个,

前后对齐,
并由牙冠连接。

随着时间的推移,尖牙 被
推出去形成三角形牙冠。

相邻的牙齿形成了一个连续的
锯齿形的牙冠,用于切片和切块。

然后
在每组牙齿的后面形成一个低架子

,成为粉碎的平台。

正如 Cope 意识到的那样,摩擦齿 臼齿
充当了后续

特殊形式的辐射的起点

每种形式都根据进化的需要而形成。

拉直牙冠
并移除架子

,你就得到了猫和狗的方便的
刀片状牙齿。

移除 前牙尖,抬起架子
,你就有了我们人类的臼齿。

一些额外的调整可以让你
获得马牙或牛牙。

Cope 直觉
假设中的一些细节被证明是错误的。

但是在化石记录中,

有一些牙齿
看起来和他预测的一样

,我们可以将所有现存哺乳动物的臼齿
追溯到那个原始形式。

今天,食用多种食物的能力

使哺乳动物能够在

从山峰
和海洋深处

到热带雨林和沙漠的栖息地中生存。

因此,我们生物学课程的成功
在很大程度上归功于

不起眼的哺乳动物臼齿的非凡力量和适应性。