The mighty mathematics of the lever Andy Peterson and Zack Patterson

A famous Ancient Greek once said,

“Give me a place to stand,
and I shall move the Earth.”

But this wasn’t some wizard claiming to
perform impossible feats.

It was the mathematician Archimedes

describing the fundamental principle
behind the lever.

The idea of a person moving such a huge
mass on their own

might sound like magic,

but chances are you’ve seen it
in your everyday life.

One of the best examples is something
you might recognize

from a childhood playground:

a teeter-totter, or seesaw.

Let’s say you and a friend
decide to hop on.

If you both weigh about the same,

you can totter back and forth
pretty easily.

But what happens if your
friend weighs more?

Suddenly, you’re stuck up in the air.

Fortunately, you probably know what to do.

Just move back on the seesaw,
and down you go.

This may seem simple and intuitive,

but what you’re actually doing is using a
lever to lift a weight

that would otherwise be too heavy.

This lever is one type of what we call
simple machines,

basic devices that reduce the amount
of energy required for a task

by cleverly applying the basic
laws of physics.

Let’s take a look at how it works.

Every lever consists of
three main components:

the effort arm, the resistance arm,
and the fulcrum.

In this case,
your weight is the effort force,

while your friend’s weight provides
the resistance force.

What Archimedes learned was that there
is an important relationship

between the magnitudes of these forces
and their distances from the fulcrum.

The lever is balanced when

the product of the effort force
and the length of the effort arm

equals the product of the resistance force
and the length of the resistance arm.

This relies on one of the
basic laws of physics,

which states that work measured in joules
is equal to force applied over a distance.

A lever can’t reduce the amount of work
needed to lift something,

but it does give you a trade-off.

Increase the distance and
you can apply less force.

Rather than trying to lift
an object directly,

the lever makes the job easier by
dispersing its weight

across the entire length of the effort
and resistance arms.

So if your friend weighs
twice as much as you,

you’d need to sit twice as far from the
center as him in order to lift him.

By the same token, his little sister,
whose weight is only a quarter of yours,

could lift you by sitting four times
as far as you.

Seesaws may be fun, but the implications
and possible uses of levers

get much more impressive than that.

With a big enough lever,
you can lift some pretty heavy things.

A person weighing 150 pounds,
or 68 kilograms,

could use a lever just 3.7 meters long
to balance a smart car,

or a ten meter lever to lift
a 2.5 ton stone block,

like the ones used to build
the Pyramids.

If you wanted to lift the Eiffel Tower,
your lever would have to be a bit longer,

about 40.6 kilometers.

And what about Archimedes' famous boast?

Sure, it’s hypothetically possible.

The Earth weighs 6 x 10^24 kilograms,

and the Moon that’s about
384,400 kilometers away

would make a great fulcrum.

So all you’d need to lift the Earth

is a lever with a length of about a
quadrillion light years,

1.5 billion times the distance to
the Andromeda Galaxy.

And of course a place to stand
so you can use it.

So for such a simple machine,

the lever is capable of some pretty
amazing things.

And the basic elements of levers
and other simple machines

are found all around us in the various
instruments and tools

that we, and even some other animals,
use to increase our chances of survival,

or just make our lives easier.

After all, it’s the mathematical
principles behind these devices

that make the world go round.

一位著名的古希腊人曾经说过:

“给我一个立足点
,我将移动地球。”

但这不是某个声称能
完成不可能的壮举的巫师。

正是数学家阿基米德

描述
了杠杆背后的基本原理。

一个人自己移动如此巨大的物体的想法

可能听起来很神奇,

但你很可能在日常生活中见过它

最好的例子之一是
你可能

从童年游乐场认出的东西

:跷跷板或跷跷板。

假设您和一个朋友
决定继续前进。

如果你们俩的体重差不多,

就可以
很容易地来回踉跄。

但是如果你的
朋友体重增加了怎么办?

突然,你被困在了空中。

幸运的是,您可能知道该怎么做。

只需在跷跷板上向后移动,
然后向下走。

这可能看起来简单直观,

但您实际上正在做的是使用
杠杆来提升

否则会太重的重量。

这种杠杆是我们所说的
简单机器的一种,是一种

基本设备,

通过巧妙地应用
物理基本定律来减少任务所需的能量。

让我们来看看它是如何工作的。

每个杠杆都由
三个主要部分组成

:力臂、阻力臂
和支点。

在这种情况下,
你的体重是努力的力量,

而你朋友的体重提供
了阻力。

阿基米德学到的是,

这些力的大小
与其与支点的距离之间存在重要关系。

力与力臂长度

的乘积等于阻力
与阻力臂长度的乘积时,杠杆平衡。

这依赖于
物理的基本定律之一,

该定律指出以焦耳测量的功
等于施加在一定距离上的力。

杠杆不能减少
举起某物所需的工作量,

但它确实给你一个权衡。

增加距离,
您可以施加更少的力。 杠杆

不是试图直接举起
物体,而是

通过
将其重量

分散在力臂和阻力臂的整个长度上来使工作更容易

因此,如果您的朋友的体重
是您的两倍,

那么您需要坐的
距离是他的两倍才能举起他。

同样的道理,他的妹妹,
体重只有你的四分之一,

坐得比你高四倍,就能把你举起来

跷跷板可能很有趣,但杠杆的含义
和可能的用途

比这更令人印象深刻。

使用足够大的杠杆,
您可以举起一些非常重的东西。

一个体重 150 磅
或 68 公斤的人

可以使用仅 3.7 米长的杠杆
来平衡智能汽车,

或者使用 10 米长的杠杆来
举起 2.5 吨的石块,

就像用来
建造金字塔的石块一样。

如果你想举起埃菲尔铁塔,
你的杠杆必须更长一点,

大约 40.6 公里。

那么阿基米德的著名吹嘘呢?

当然,假设是可能的。

地球重 6 x 10^24 公斤

,距离约 384,400 公里的月球

将成为一个很大的支点。

所以你只需要

一根长约万亿光年的杠杆来举起地球,是

到仙女座星系距离的 15 亿倍

当然还有一个可以站立的地方,
这样你就可以使用它。

所以对于这么简单的机器

,杠杆可以做一些非常
了不起的事情。

杠杆
和其他简单机器的基本

元素在我们周围的各种
工具和工具中随处

可见,我们甚至其他一些动物
用来增加我们生存的机会,

或者只是让我们的生活更轻松。

毕竟,
是这些设备背后的数学原理

让世界运转起来。