These bacteria eat plastic Morgan Vague

Transcriber: Ivana Korom
Reviewer: Joanna Pietrulewicz

Plastics: you know about them,
you may not love them,

but chances are
you use them every single day.

By 2050, researchers estimate

that there will be more plastic
in the ocean than fish.

Despite our best efforts,

only nine percent of all plastic we use
winds up being recycled.

And even worse,

plastic is incredibly tough and durable

and researchers estimate

that it can take anywhere
from 500 to 5,000 years

to fully break down.

It leaches harmful chemical contaminants
into our oceans, our soil,

our food, our water, and into us.

So how did we wind up
with so much plastic waste?

Well, it’s simple.

Plastic is cheap, durable,
adaptable, and it’s everywhere.

But the good news is

there’s something else that’s cheap,
durable, adaptable and everywhere.

And my research shows
it may even be able to help us

with our plastic pollution problem.

I’m talking about bacteria.

Bacteria are microscopic living beings
invisible to the naked eye

that live everywhere,

in all sorts of diverse
and extreme environments,

from the human gut, to soil, to skin,

to vents in the ocean floor, reaching
temperatures of 700 degrees Fahrenheit.

Bacteria live everywhere,

in all sorts of diverse
and extreme environments.

And as such, they have to get
pretty creative with their food sources.

There’s also a lot of them.

Researchers estimate that there are
roughly five million trillion trillion –

that’s a five with 30 zeros after it –
bacteria on the planet.

Now, considering that we humans produce

300 million tons of new plastic each year,

I’d say that our plastic numbers

are looking pretty
comparable to bacteria’s.

So, after noticing this

and after learning
about all of the creative ways

that bacteria find food,

I started to think:

could bacteria in
plastic-polluted environments

have figured out
how to use plastic for food?

Well, this is the question that I decided
to pursue a couple of years ago.

Now, fortunately for me,

I’m from one of the most
polluted cities in America,

Houston, Texas.

(Laughs)

In my hometown alone,

there are seven EPA-designated
Superfund sites.

These are sites that are so polluted,

that the government has deemed
their cleanup a national priority.

So I decided to trek around to these sites

and collect soil samples
teeming with bacteria.

I started toying with a protocol,

which is fancy science talk for a recipe.

And what I was trying to cook up
was a carbon-free media,

or a food-free environment.

An environment without the usual
carbons, or food,

that bacteria, like us humans,
need to live.

Now, in this environment,

I would provide my bacteria
with a sole carbon, or food, source.

I would feed my bacteria
polyethylene terephthalate,

or PET plastic.

PET plastic is the most widely produced
plastic in the world.

It’s used in all sorts
of food and drink containers,

with the most notorious example
being plastic water bottles,

of which we humans currently go through
at a rate of one million per minute.

So, what I would be doing,

is essentially putting my bacteria
on a forced diet of PET plastic

and seeing which, if any,
might survive or, hopefully, thrive.

See, this type of experiment
would act as a screen

for bacteria that had adapted
to their plastic-polluted environment

and evolved the incredibly cool
ability to eat PET plastic.

And using this screen,

I was able to find some bacteria
that had done just that.

These bacteria had figured out
how to eat PET plastic.

So how do these bacteria do this?

Well, it’s actually pretty simple.

Just as we humans digest carbon or food
into chunks of sugar

that we then use for energy,

so too do my bacteria.

My bacteria, however, have figured out
how to do this digestion process

to big, tough, durable PET plastic.

Now, to do this,
my bacteria use a special version

of what’s called an enzyme.

Now, enzymes are simply compounds
that exist in all living things.

There are many different types of enzymes,

but basically, they make
processes go forward,

such as the digestion of food into energy.

For instance, we humans
have an enzyme called an amylase

that helps us digest
complex starches, such as bread,

into small chunks of sugar
that we can then use for energy.

Now, my bacteria have
a special enzyme called a lipase

that binds to big, tough,
durable PET plastic

and helps break it
into small chunks of sugar

that my bacteria can then use for energy.

So basically,

PET plastic goes from being
a big, tough, long-lasting pollutant

to a tasty meal for my bacteria.

Sounds pretty cool, right?

And I think, given the current scope
of our plastic pollution problem,

I think it sounds pretty useful.

The statistics I shared with you

on just how much plastic waste
has accumulated on our planet

are daunting.

They’re scary.

And I think they highlight

that while reducing, reusing
and recycling are important,

they alone are not going to be enough
to solve this problem.

And this is where I think bacteria
might be able to help us out.

But I do understand
why the concept of bacterial help

might make some people a little nervous.

After all, if plastic is everywhere
and these bacteria eat plastic,

isn’t there a risk of these bacteria
getting out in the environment

and wreaking havoc?

Well, the short answer is no,
and I’ll tell you why.

These bacteria are already
in the environment.

The bacteria in my research
are not genetically modified frankenbugs.

These are naturally occurring bacteria

that have simply adapted
to their plastic-polluted environment

and evolved the incredibly gnarly
ability to eat PET plastic.

So the process of bacteria eating plastic
is actually a natural one.

But it’s an incredibly slow process.

And there remains a lot of work to be done

to figure out how to speed up
this process to a useful pace.

My research is currently
looking at ways of doing this

through a series of UV,
or ultraviolet, pretreatments,

which basically means
we blast PET plastic with sunlight.

We do this because sunlight
acts a bit like tenderizer on a steak,

turning the big, tough,
durable bonds in PET plastic

a bit softer and a bit easier
for my bacteria to chew on.

Ultimately, what my research hopes to do

is create an industrial-scale
contained carbon-free system,

similar to a compost heap,

where these bacteria can thrive
in a contained system,

where their sole food source
is PET plastic waste.

Imagine one day being able to dispose
of all of your plastic waste

in a bin at the curb

that you knew was bound for a dedicated
bacteria-powered plastic waste facility.

I think with some hard work
this is an achievable reality.

Plastic-eating bacteria is not a cure-all.

But given the current statistics,
it’s clear that we humans,

we could use a little help
with this problem.

Because people,

we possess a pressing problem
of plastic pollution.

And bacteria might be
a really important part of the solution.

Thank you.

(Applause)

抄写员:Ivana Korom
审稿人:Joanna Pietrulewicz

塑料:您了解它们,
您可能不喜欢它们,


您可能每天都在使用它们。

研究人员估计,到 2050 年,

海洋中的塑料将比鱼还多。

尽管我们尽了最大努力,

但我们使用的所有塑料中只有 9%
最终被回收利用。

更糟糕的是,

塑料非常坚韧耐用

,研究人员

估计它可能需要
500 到 5000 年

才能完全分解。

它将有害的化学污染物
渗入我们的海洋、土壤

、食物、水和我们体内。

那么我们是如何
处理这么多塑料垃圾的呢?

嗯,很简单。

塑料便宜、耐用、
适应性强,而且无处不在。

但好消息是,

还有其他便宜、
耐用、适应性强且随处可见的东西。

我的研究表明,
它甚至可以帮助

我们解决塑料污染问题。

我说的是细菌。

细菌是
肉眼看不见的

微小生物,生活

在各种不同
和极端的环境中,

从人体肠道、土壤、皮肤

到海底通风口,
温度达到 700 华氏度。

细菌无处不在,生活

在各种各样
的极端环境中。

因此,他们必须
对他们的食物来源非常有创意。

他们也有很多。

研究人员估计,地球上
大约有 500 万万亿——

即后面有 30 个零的 5——
细菌。

现在,考虑到我们人类

每年生产 3 亿吨新塑料,

我想说我们的塑料

数量看起来
与细菌的数量相当。

因此,在注意到这一点

并了解

了细菌寻找食物的所有创造性方式之后,

我开始思考:

塑料污染环境中的细菌

是否已经想出
如何将塑料用于食物?

嗯,这是我
几年前决定研究的问题。

现在,对我来说幸运的是,

我来自
美国污染最严重的城市之一

,德克萨斯州休斯顿。

(笑)

仅在我的家乡,

就有 7 个 EPA 指定的
超级基金站点。

这些场地污染严重

,政府已将
清理工作视为国家优先事项。

所以我决定跋涉到这些地方

,收集
充满细菌的土壤样本。

我开始玩弄一个协议,

这是一个关于食谱的花哨的科学谈话。

而我试图创造的
是一个无碳媒体,

或者一个无食物的环境。

没有

像我们人类一样的细菌
需要生存的通常碳或食物的环境。

现在,在这种环境中,

我将为我的细菌
提供唯一的碳或食物来源。

我会喂我的细菌
聚对苯二甲酸乙二醇酯

或 PET 塑料。

PET塑料是世界上生产最广泛的
塑料。

它被用于
各种食品和饮料容器

,最臭名昭著的例子
是塑料水瓶

,我们人类目前
以每分钟一百万的速度通过塑料水瓶。

所以,我要做的,

基本上就是让我的
细菌强制食用 PET 塑料,

然后看看哪些细菌(如果有的话)
可能存活下来,或者有希望茁壮成长。

看,这种类型的实验
将充当细菌的筛选

器,这些细菌已经
适应了塑料污染的环境,

并进化出了吃 PET 塑料的令人难以置信的凉爽
能力。

使用这个屏幕,

我能够找到一些
这样做的细菌。

这些细菌已经找到
了吃 PET 塑料的方法。

那么这些细菌是如何做到这一点的呢?

嗯,其实很简单。

就像我们人类将碳或食物消化
成糖块

,然后我们将其用作能量一样,

我的细菌也是如此。

然而,我的细菌已经想出了
如何

对大、坚韧、耐用的 PET 塑料进行这种消化过程。

现在,为了做到这一点,
我的细菌使用了一种特殊

版本的酶。

现在,酶
只是存在于所有生物中的化合物。

有许多不同类型的酶,

但基本上,它们使
过程向前发展,

例如将食物消化成能量。

例如,我们人类
有一种叫做淀粉酶的酶

,它可以帮助我们将
复杂的淀粉(例如面包)消化

成小块糖
,然后我们可以将其用作能量。

现在,我的细菌有
一种特殊的酶,称为脂肪

酶,它可以与大而坚韧、
耐用的 PET 塑料结合

,帮助将其
分解成小块糖

,然后我的细菌可以将其用作能量。

所以基本上,

PET塑料从
一种大的、坚韧的、持久的污染物

变成了我的细菌的美味佳肴。

听起来很酷,对吧?

而且我认为,
鉴于我们目前塑料污染问题的范围,

我认为这听起来非常有用。

我与您分享的关于我们星球

上积累了多少塑料垃圾的统计数据

令人生畏。

他们很可怕。

我认为他们强调

,虽然减少、再利用
和回收很重要,

但仅靠它们
不足以解决这个问题。

这就是我认为细菌
可能能够帮助我们的地方。

但我确实理解
为什么细菌帮助的概念

可能会让一些人有点紧张。

毕竟,如果塑料无处不在,
而这些细菌会吃掉塑料,

那么这些细菌
是否存在进入环境

并造成严重破坏的风险?

好吧,简短的回答是否定的
,我会告诉你为什么。

这些细菌已经存在
于环境中。

我研究中的细菌
不是转基因的弗兰肯虫。

这些是天然存在的细菌

,它们只是
适应了塑料污染的环境,

并进化出了吃 PET 塑料的令人难以置信的粗糙
能力。

所以细菌吃塑料的过程
实际上是一个自然过程。

但这是一个非常缓慢的过程。

要弄清楚如何将
这一过程加快到有用的速度,还有很多工作要做。

我的研究目前正在
寻找

通过一系列紫外线
或紫外线预处理来做到这一点的方法,

这基本上意味着
我们用阳光照射 PET 塑料。

我们这样做是因为阳光
有点像牛排上的嫩化剂,

使 PET 塑料中的大而坚韧、
耐用的粘合

变得更柔软,更容易
让我的细菌咀嚼。

最终,我的研究希望做的

是创建一个工业规模
的无碳系统,

类似于堆肥堆

,这些细菌可以
在一个封闭的系统中茁壮成长

,它们唯一的食物来源
是 PET 塑料垃圾。

想象一下有一天,您可以
将所有塑料垃圾丢弃

在路边的一个垃圾箱中

,您知道该垃圾箱是专门用于
细菌驱动的塑料垃圾处理设施的。

我认为通过一些努力,
这是一个可以实现的现实。

吃塑料的细菌不是万灵药。

但鉴于目前的统计数据,
很明显,我们人类

可以
在这个问题上使用一点帮助。

因为人,

我们有一个紧迫
的塑料污染问题。

细菌可能
是解决方案中非常重要的一部分。

谢谢你。

(掌声)