Using radioactive drugs to see inside your body Pedro Brugarolas

This syringe contains a radioactive form
of glucose known as FDG.

The doctor will soon inject its contents
into her patient’s arm,

whom she’s testing for cancer
using a PET scanner.

The FDG will quickly circulate
through his body.

If he has a tumor,

cancer cells within it will take up a
significant portion of the FDG,

which will act as a beacon
for the scanner.

PET tracers such as FDG

are among the most remarkable tools
in medical diagnostics,

and their life begins in
a particle accelerator,

just hours earlier.

The particle accelerator in question
is called a cyclotron,

and it’s often housed in a bunker
within hospitals.

It uses electromagnetic fields to propel
charged particles

like protons faster and faster
along a spiraling path.

When the protons reach
their maximum speed,

they shoot out onto a target that contains
a few milliliters of a type of water

with a heavy form of oxygen
called oxygen-18.

When a proton slams into one of these
heavier oxygen atoms,

it kicks out another subatomic particle
called a neutron.

This impact turns oxygen-18
into fluorine-18,

a radioactive isotope that can be
detected on a PET scan.

In a little under two hours,

about half the fluorine will be gone
due to radioactive decay,

so the clock is ticking
to get the scan done.

So how can fluorine-18 be
used to detect diseases?

Radiochemists at the hospital can use
a series of chemical reactions

to attach the radioactive fluorine
to different molecules,

creating radiotracers.

The identity of the tracer depends on what
doctors want to observe.

FDG is a common one because the rate at
which cells consume glucose

can signal the presence of cancer;

the location of an infection;

or the slowing brain function of dementia.

The FDG is now ready for
the patient’s scan.

When a radiolabeled tracer
enters the body,

it travels through the circulatory system
and gets taken up by its target—

whether that’s a protein in the brain,
cancer cells, or otherwise.

Within a few minutes,

a significant amount of the tracer has
found its way to the target area

and the rest has cleared from circulation.

Now the doctors can see
their target using a PET,

or positron emission tomography, scanner.

The radiation that the tracer emits
is what makes this possible.

The isotopes used in PET decay
by positron emission.

Positrons are essentially electrons
with positive charge.

When emitted, a positron collides
with an electron

from another molecule in its surroundings.

This causes a tiny nuclear reaction

in which the mass of the two particles is
converted into two high-energy photons,

similar to X-rays,

that shoot out in opposite directions.

These photons will then impact an array

of paired radiation detectors
in the scanner walls.

The software in the scanner
uses those detectors

to estimate where inside the body
the collision occurred

and create a 3D map of the
tracer’s distribution.

PET scans can detect the spread of cancer

before it can be spotted with
other types of imaging.

They’re also revolutionizing the diagnosis
of Alzheimer’s disease

by allowing doctors to see amyloid,

the telltale protein buildup that
otherwise couldn’t be confirmed

without an autopsy.

Meanwhile, researchers are actively
working to develop new tracers

and expand the possibilities of what
PET scans can be used for.

But with all this talk of radiation and
nuclear reactions inside the body,

are these scans safe?

Even though no amount of ionizing
radiation is completely safe,

the amount of radiation the body receives
during a PET scan is actually quite low.

One scan is comparable to what you’re
exposed to over two or three years

from natural radioactive sources,
like radon gas;

or the amount a pilot would rack up

from cosmic radiation after
20 to 30 transatlantic flights.

Most patients feel that those risks
are acceptable

for the chance to diagnose
and treat their illnesses.

这种注射器含有一种放射性形式
的葡萄糖,称为 FDG。

医生很快会将其内容物
注入患者的手臂,

她正在使用 PET 扫描仪对患者进行癌症检测

FDG会迅速
在他的体内循环。

如果他有肿瘤,其中的

癌细胞将占据
FDG 的很大一部分,

这将充当
扫描仪的灯塔。

FDG 等 PET 示踪剂

是医学诊断中最出色的工具
之一

,它们的生命
始于粒子加速器,

就在几个小时前。

所讨论的粒子加速器
被称为回旋加速器

,它通常安装在医院的掩体
中。

它使用电磁场沿着螺旋路径越来越快地推动质子等
带电粒子

当质子
达到最大速度时,

它们会射向一个目标,该目标包含
几毫升一种水,其中

含有一种称为氧 18 的重氧形式

当质子撞击其中一个
较重的氧原子时,

它会踢出另一种
称为中子的亚原子粒子。

这种影响将氧 18
变成氟 18,这

是一种放射性同位素,可以
在 PET 扫描中检测到。

在不到两个小时的时间里,

大约一半的氟将
由于放射性衰变而消失,

因此完成扫描的时钟正在滴答作响

那么fluorine-18如何
用于检测疾病呢?

医院的放射化学家可以使用
一系列化学

反应将放射性氟附着
到不同的分子上,

从而产生放射性示踪剂。

示踪剂的身份取决于
医生想要观察什么。

FDG 是一种常见的,因为
细胞消耗葡萄糖的速率

可以表明癌症的存在;

感染的位置;

或痴呆症的大脑功能减慢。

FDG 现在已准备好
进行患者扫描。

当放射性标记的示踪剂
进入人体时,

它会穿过
循环系统并被它的目标——

无论是大脑中的蛋白质、
癌细胞还是其他部位——吸收。

几分钟内

,大量示踪剂
已到达目标区域

,其余的已从循环中清除。

现在医生可以
使用 PET

或正电子发射断层扫描扫描仪看到他们的目标。

示踪剂发出的辐射
使这成为可能。

PET 中使用的同位素
通过正电子发射衰变。

正电子本质上是
带正电荷的电子。

当发射时,正电子

与周围另一个分子的电子发生碰撞。

这会导致微小的核反应

,其中两个粒子的质量被
转换成两个高能光子,

类似于 X 射线,

它们向相反的方向射出。

然后,这些光子将撞击

扫描仪壁中的成对辐射探测器阵列。

扫描仪中的软件
使用这些探测器

来估计身体内部
发生碰撞的位置,

并创建示踪剂分布的 3D 地图

PET 扫描可以在其他类型的成像发现癌症之前检测到癌症的扩散

他们还

通过允许医生查看淀粉样蛋白来彻底改变阿尔茨海默病的诊断,淀粉样

蛋白是
一种明显的蛋白质积累,否则在

没有尸检的情况下无法确认。

与此同时,研究人员
正在积极开发新的示踪剂,

并扩大
PET 扫描的应用可能性。

但是,由于这些关于体内辐射和
核反应的讨论

,这些扫描是否安全?

尽管没有任何量的电离
辐射是完全安全的

,但身体
在 PET 扫描期间接收的辐射量实际上非常低。

一次扫描相当于您
在两三年内

从天然放射源(
如氡气)中接触到的东西;

或者飞行员


20 到 30 次跨大西洋飞行后从宇宙辐射中积累的量。

大多数患者认为这些风险

对于诊断
和治疗他们的疾病的机会是可以接受的。