Why dont perpetual motion machines ever work Netta Schramm

Around 1159 A.D.,

a mathematician called
Bhaskara the Learned

sketched a design for a wheel
containing curved reservoirs of mercury.

He reasoned that as the wheels spun,

the mercury would flow to the bottom
of each reservoir,

leaving one side of the wheel
perpetually heavier than the other.

The imbalance would keep
the wheel turning forever.

Bhaskara’s drawing was one of
the earliest designs

for a perpetual motion machine,

a device that can do work indefinitely
without any external energy source.

Imagine a windmill that produced
the breeze it needed to keep rotating.

Or a lightbulb whose glow provided
its own electricity.

These devices have captured many
inventors' imaginations

because they could transform
our relationship with energy.

For example, if you could build
a perpetual motion machine

that included humans as part of its
perfectly efficient system,

it could sustain life indefinitely.

There’s just one problem.

They don’t work.

Ideas for perpetual motion machines

all violate one or more
fundamental laws of thermodynamics,

the branch of physics that describes
the relationship

between different forms of energy.

The first law of thermodynamics says
that energy can’t be created or destroyed.

You can’t get out more energy
than you put in.

That rules out a useful
perpetual motion machine right away

because a machine could only ever
produce as much energy as it consumed.

There wouldn’t be any left over
to power a car or charge a phone.

But what if you just wanted the machine
to keep itself moving?

Inventors have proposed plenty of ideas.

Several of these have been variations
on Bhaskara’s over-balanced wheel

with rolling balls
or weights on swinging arms.

None of them work.

The moving parts that make one
side of the wheel heavier

also shift its center of mass downward
below the axle.

With a low center of mass,

the wheel just swings back and forth
like a pendulum,

then stops.

What about a different approach?

In the 17th century, Robert Boyle
came up with an idea

for a self-watering pot.

He theorized that capillary action,

the attraction
between liquids and surfaces

that pulls water through thin tubes,

might keep the water cycling
around the bowl.

But if the capillary action is strong
enough to overcome gravity

and draw the water up,

it would also prevent it from falling
back into the bowl.

Then there are versions with magnets,
like this set of ramps.

The ball is supposed to be pulled
upwards by the magnet at the top,

fall back down through the hole,

and repeat the cycle.

This one fails because like
the self-watering pot,

the magnet would simply hold
the ball at the top.

Even if it somehow did keep moving,

the magnet’s strength
would degrade over time

and eventually stop working.

For each of these machines to keep moving,

they’d have to create some extra energy

to nudge the system
past its stopping point,

breaking the first law of thermodynamics.

There are ones that seem to keep going,

but in reality, they invariably turn out
to be drawing energy

from some external source.

Even if engineers could
somehow design a machine

that didn’t violate the first law
of thermodynamics,

it still wouldn’t work in the real world
because of the second law.

The second law of thermodynamics

tells us that energy tends to spread out
through processes like friction.

Any real machine would have moving parts

or interactions with air
or liquid molecules

that would generate tiny amounts
of friction and heat,

even in a vacuum.

That heat is energy escaping,

and it would keep leeching out,

reducing the energy available
to move the system itself

until the machine inevitably stopped.

So far, these two laws of thermodynamics

have stymied every idea
for perpetual motion

and the dreams of perfectly efficient
energy generation they imply.

Yet it’s hard to conclusively say we’ll
never discover a perpetual motion machine

because there’s still so much we don’t
understand about the universe.

Perhaps we’ll find
new exotic forms of matter

that’ll force us to revisit the laws
of thermodynamics.

Or maybe there’s perpetual motion
on tiny quantum scales.

What we can be reasonably sure about
is that we’ll never stop looking.

For now, the one thing that seems
truly perpetual is our search.

大约在公元 1159 年,

一位名叫
Bhaskara the Learned 的数学家

草拟了一个
包含弯曲水银储存器的轮子的设计。

他推断,当轮子旋转时

,水银会流到
每个水库的底部,

使轮子的一侧
永远比另一侧重。

这种不平衡
将使车轮永远转动。

Bhaskara 的绘画是永动机的最早设计之一,这是一种

无需任何外部能源即可无限期工作的设备。

想象一个风车,它产生
了保持旋转所需的微风。

或者是一个灯泡,它的光芒提供
了自己的电力。

这些设备吸引了许多
发明家的想象力,

因为它们可以改变
我们与能源的关系。

例如,如果你可以建造
一个永动机

,将人类作为其
完美高效系统的一部分,

它可以无限期地维持生命。

只有一个问题。

他们不工作。

永动机的想法

都违反
了热力学的一个或多个基本定律,热力学

是描述

不同形式能量之间关系的物理学分支。

热力学第一定律
说能量不能被创造或毁灭。

你不能得到
比你投入更多的能量。

这立即排除了有用的
永动机,

因为机器只能
产生与消耗一样多的能量。

不会有任何剩余
来为汽车供电或为手机充电。

但是,如果您只是想让
机器保持自身运转怎么办?

发明者提出了很多想法。

其中一些是
Bhaskara 的过度平衡轮的变体,

带有滚动球
或摆臂上的重物。

它们都不起作用。

使车轮一侧更重的运动部件

也将其质心向下移动
到轴下方。

由于质心较低

,车轮
就像钟摆一样来回摆动,

然后停止。

不同的方法呢?

在 17 世纪,罗伯特·博伊尔
想出

了一个自动浇水罐的想法。

他推测毛细作用,


液体和表面之间的吸引力

,将水从细管中拉出,

可能会使水
在碗周围循环。

但是,如果毛细作用足够强大
,可以克服重力

并将水吸起来,

它也可以防止它落
回碗中。

然后是带有磁铁的版本,
例如这组坡道。

球应该
被顶部的磁铁向上拉,

然后通过孔落回,

然后重复循环。

这个失败了,因为
就像自动浇水的锅一样

,磁铁只会
将球固定在顶部。

即使它以某种方式继续移动

,磁铁的强度
也会随着时间的推移

而下降并最终停止工作。

为了使这些机器中的每一个继续移动,

它们必须产生一些额外的能量

来推动系统
超过其停止点,从而

打破热力学第一定律。

有些似乎继续前进,

但实际上,它们总是

从某些外部来源汲取能量。

即使工程师能够
以某种方式设计

出不违反热力学第一定律的机器,由于第二
定律,

它仍然无法在现实世界中工作

热力学第二定律

告诉我们,能量倾向于
通过摩擦等过程传播。

任何真正的机器都会有运动部件

或与空气
或液体分子的相互作用,即使在真空

中也会产生微量
的摩擦和热量

热量是能量逃逸

,它会不断渗出,

减少可
用于移动系统本身的能量,

直到机器不可避免地停止。

到目前为止,这两条热力学定律

阻碍了每一个
关于永动机的想法

以及
它们所暗示的完美高效能量产生的梦想。

然而,很难说我们永远
不会发现永动机,

因为我们
对宇宙还有很多不了解的地方。

也许我们会发现
新的奇异物质形式

,迫使我们重新审视
热力学定律。

或者也许
在微小的量子尺度上存在永动机。

我们可以合理确定的
是,我们永远不会停止寻找。

目前,似乎真正永恒的一件事
是我们的搜索。