A photon walks into a bar

Transcriber: Amanda Zhu
Reviewer: Peter Van de Ven

Since April,

I’ve been working the morning shift,

and I’ve learned two things.

Four o’clock in the morning -
that continues to be painfully early.

It has also taught me, though,

that a sunrise
can be stunningly beautiful.

There’s something magical
about the light that we get from the sun.

Light, of course, is photons,

and the photon
is this interesting particle

that has no mass,

always travels at the speed of light,

and it packs a real punch of energy.

Now the photons we get from the sun

come to us in a wide range
of energy levels,

ranging all the way
from the very energetic blue light,

that has so much energy

that it can interact
with the molecules of the air -

and their scattering
is the reason the sky is blue -

to the lazier red photons

that travel unimpeded
in a straight line through the atmosphere,

which is why a sunrise can be red.

So we get all of
these photons from the sun,

all of these different energy levels.

And here’s the tragedy.

When we try to harvest that energy,
we’re optimized for just one wavelength;

everything else is sub-optimal.

To understand why,

let me explain to you
how a solar panel works.

A solar panel is made
out of a semiconductor material,

and to get useful electricity
out of a semiconductor,

you have to lift the electron
from its natural state

to the conduction band.

The amount of energy needed to do that
is called the bandgap.

Now, there’s three scenarios.

One, the photon has exactly
the same energy as the bandgap;

in that case, you can lift the electron
to the conduction band

where it can do useful work.

The second case,

the photon has less energy
than the band gap;

in that case,

the photons go unused

because they don’t have enough energy
to free any electrons.

And then the third case,

the photon has more energy
than the bandgap.

Well, that extra energy is wasted as well

because you’re still going to get
just one electron for one photon.

The best we can do with today’s technology

is to harvest around 24 percent
of the available energy.

And today’s solar panels are getting
very close to that fundamental limit.

This year,

solar panels will provide

around five percent
of the electricity we use globally.

Clearly, that’s not good enough.

To change our energy mix,

we have to install
many, many more solar panels,

and we have to increase
the power of each panel.

But we’re up against
the fundamental limit.

So how do we get out of that box?

Well, there is a solution;
it’s called tandem.

In laboratories in Europe
and the United States,

mostly privately funded,

breakthroughs have now made it possible

to make a cost-effective tandem module
that uses two semiconductors.

The top material is a high bandgap
harvesting the high energy photons,

and the bottom material is a low bandgap
capturing the long wavelength photons.

Tandem is going to increase
the energy output of a solar panel by 35%.

To make this possible,

we have to solve

all manner of difficult engineering
and manufacturing problems,

and it’s just now

that cost-effective solutions
are becoming available

and commercially viable tandem modules
are becoming a reality

in the very near future.

This is the most important
innovation in solar

since solar was first conceived
in Bell Labs, in 1954.

Wherever they’re going to be deployed,

tandem is going to increase
the energy yield per acre.

They’re going to make
every installation more efficient.

This is such an important technology.

We have to urgently deploy it
everywhere where it’s needed most,

places like India.

India is at the forefront
of the battle against climate change.

Its people are hungry for new solutions,

and they have some of the lowest
energy use per capita in the world.

India deserves an opportunity

to industrialize with something
more appealing than coal,

and tandem modules
can be that opportunity.

Imagine powerful tandem modules
splitting water into oxygen and hydrogen.

Thanks to the increased energy yield
of the tandem module,

clean hydrogen can become
economically feasible.

And once you have clean hydrogen,

now you can store vast amounts of energy
for long periods of time

and fuel industrial processes
such as steel making.

Tandem modules are transformational.

By themselves, they are not good enough.

Winning the battle
against climate change

is a huge challenge.

It’s a battle we are currently losing.

We’re not decreasing but we’re increasing
our CO2 admissions.

To change that,

we need a dramatic psychological shift.

We need to get past a tipping point,

a point in time where the majority of us

believes that we are responsible for
and need to take care of our planet.

Today, we’re nowhere
near that tipping point,

but with the advent of tandem,
our tools are getting better.

And now it’s up to all of us
to put them to good use.

抄写员:Amanda Zhu
审稿人:Peter Van de Ven

从四月份开始,

我一直在上早班

,我学到了两件事。

凌晨四点——
这仍然是痛苦的早。

不过,它也教会了我,

日出
可以美得惊人。

我们从太阳获得的光有一些神奇之处。

光当然是光子,

而光子
就是这种有趣的粒子

,它没有质量,

总是以光速传播

,它蕴含着真正的能量。

现在,我们从太阳获得的光子

以各种能级到达我们身边,

从非常高能的蓝光

一直延伸到我们身边,它具有如此多的能量

,可以
与空气分子相互作用

——它们的散射
是 天空是蓝色的原因

  • 懒惰的红色光子

在大气层中不受阻碍地直线传播,

这就是为什么日出可以是红色的。

所以我们
从太阳中得到所有这些光子,

所有这些不同的能级。

这就是悲剧。

当我们试图收集这种能量时,
我们只针对一种波长进行了优化;

其他一切都是次优的。

要了解原因,

让我向您解释
一下太阳能电池板的工作原理。

太阳能电池板
由半导体材料制成

,要从半导体中获取有用的
电力,

您必须将电子
从其自然状态

提升到导带。

这样做所需的能量
称为带隙。

现在,有三种情况。

一、光子具有
与带隙完全相同的能量;

在这种情况下,您可以将电子提升

到可以做有用功的导带。

第二种情况

,光子的能量
小于带隙;

在这种情况下

,光子没有被使用,

因为它们没有足够的能量
来释放任何电子。

然后是第三种情况

,光子比带隙有更多的能量

好吧,额外的能量也被浪费了,

因为你仍然会
为一个光子获得一个电子。

利用当今的技术,我们能做的最好的事情

就是收集大约 24%
的可用能源。

今天的太阳能电池板已经
非常接近这个基本极限。

今年,

太阳能电池板将提供

我们全球所用电力的 5% 左右。

显然,这还不够好。

为了改变我们的能源结构,

我们必须安装
更多的太阳能电池板

,我们必须增加
每块电池板的功率。

但我们正面临
基本限制。

那么我们如何摆脱那个盒子呢?

好吧,有一个解决方案;
它被称为串联。

在欧洲
和美国的实验室中,

大部分是私人资助的,

现在已经取得了突破

,使得制造使用两种半导体的具有成本效益的串联模块成为可能

顶部材料是高能带隙材料,可
捕获高能光子

,底部材料是低带隙材料,可
捕获长波长光子。

Tandem 将把
太阳能电池板的能量输出提高 35%。

为了使这成为可能,

我们必须解决

各种困难的工程
和制造问题,

而现在

,具有成本效益的解决方案
正在变得可用

,商业上可行的串联模块

在不久的将来成为现实。

这是


1954 年贝尔实验室首次构想太阳能以来太阳能领域最重要的创新。

无论将其部署在哪里,

串联都将提高
每英亩的能源产量。

他们将使
每次安装都更加高效。

这是一项非常重要的技术。

我们必须
在最需要它的地方紧急部署它,

比如印度。

印度处于
应对气候变化的最前沿。

它的人民渴望新的解决方案

,他们的
人均能源使用量是世界上最低的。

印度应该有机会

利用
比煤炭更有吸引力的东西实现工业化,

而串联
模块就是这个机会。

想象一下强大的串联模块
将水分解成氧气和氢气。

由于
串联模块的能量产量增加,

清洁氢气在经济上变得
可行。

一旦拥有清洁的氢气

,您就可以长期储存大量能量

并为炼钢等工业过程提供燃料

串联模块是变革性的。

就他们自己而言,他们还不够好。

赢得
应对气候变化的斗争

是一项巨大的挑战。

这是我们目前正在输掉的一场战斗。

我们没有减少,但我们正在增加
我们的二氧化碳摄入量。

为了改变这一点,

我们需要一个戏剧性的心理转变。

我们需要越过一个临界点,

在这个时间点,我们大多数人都

认为我们有责任
并需要照顾好我们的星球。

今天,我们
离那个临界点还很远,

但是随着串联的出现,
我们的工具变得越来越好。

现在,我们
所有人都应该好好利用它们。