How well find life on other planets Aomawa Shields

I am in search of another planet
in the universe where life exists.

I can’t see this planet
with my naked eyes

or even with the most powerful telescopes

we currently possess.

But I know that it’s there.

And understanding contradictions
that occur in nature

will help us find it.

On our planet,

where there’s water, there’s life.

So we look for planets that orbit
at just the right distance

from their stars.

At this distance,

shown in blue on this diagram
for stars of different temperatures,

planets could be warm enough
for water to flow on their surfaces

as lakes and oceans

where life might reside.

Some astronomers focus their time
and energy on finding planets

at these distances from their stars.

What I do picks up where their job ends.

I model the possible
climates of exoplanets.

And here’s why that’s important:

there are many factors
besides distance from its star

that control whether
a planet can support life.

Take the planet Venus.

It’s named after the Roman goddess
of love and beauty,

because of its benign,
ethereal appearance in the sky.

But spacecraft measurements
revealed a different story.

The surface temperature is close
to 900 degrees Fahrenheit,

500 Celsius.

That’s hot enough to melt lead.

Its thick atmosphere, not its distance
from the sun, is the reason.

It causes a greenhouse effect on steroids,

trapping heat from the sun
and scorching the planet’s surface.

The reality totally contradicted
initial perceptions of this planet.

From these lessons
from our own solar system,

we’ve learned that a planet’s atmosphere

is crucial to its climate
and potential to host life.

We don’t know what the atmospheres
of these planets are like

because the planets are so small
and dim compared to their stars

and so far away from us.

For example, one of the closest planets
that could support surface water –

it’s called Gliese 667 Cc –

such a glamorous name, right,
nice phone number for a name –

it’s 23 light years away.

So that’s more than 100 trillion miles.

Trying to measure
the atmospheric composition

of an exoplanet passing
in front of its host star is hard.

It’s like trying to see a fruit fly

passing in front of a car’s headlight.

OK, now imagine that car
is 100 trillion miles away,

and you want to know
the precise color of that fly.

So I use computer models

to calculate the kind of atmosphere
a planet would need

to have a suitable climate
for water and life.

Here’s an artist’s concept
of the planet Kepler-62f,

with the Earth for reference.

It’s 1,200 light years away,

and just 40 percent larger than Earth.

Our NSF-funded work found that it
could be warm enough for open water

from many types of atmospheres
and orientations of its orbit.

So I’d like future telescopes
to follow up on this planet

to look for signs of life.

Ice on a planet’s surface
is also important for climate.

Ice absorbs longer,
redder wavelengths of light,

and reflects shorter, bluer light.

That’s why the iceberg
in this photo looks so blue.

The redder light from the sun
is absorbed on its way through the ice.

Only the blue light
makes it all the way to the bottom.

Then it gets reflected
back to up to our eyes

and we see blue ice.

My models show that planets
orbiting cooler stars

could actually be warmer
than planets orbiting hotter stars.

There’s another contradiction –

that ice absorbs the longer
wavelength light from cooler stars,

and that light, that energy,
heats the ice.

Using climate models to explore

how these contradictions
can affect planetary climate

is vital to the search for life elsewhere.

And it’s no surprise
that this is my specialty.

I’m an African-American female astronomer

and a classically trained actor

who loves to wear makeup
and read fashion magazines,

so I am uniquely positioned to appreciate
contradictions in nature –

(Laughter)

(Applause)

… and how they can inform our search
for the next planet where life exists.

My organization, Rising Stargirls,

teaches astronomy
to middle-school girls of color,

using theater, writing and visual art.

That’s another contradiction –
science and art don’t often go together,

but interweaving them can help
these girls bring their whole selves

to what they learn,

and maybe one day join
the ranks of astronomers

who are full of contradictions,

and use their backgrounds
to discover, once and for all,

that we are truly not alone
in the universe.

Thank you.

(Applause)

我正在寻找
宇宙中存在生命的另一个星球。

我无法
用肉眼

甚至我们目前拥有的最强大的望远镜看到这个星球

但我知道它就在那里。

理解
自然界中发生的矛盾

将帮助我们找到它。

在我们的星球上,

哪里有水,哪里就有生命。

因此,我们寻找与恒星
距离恰到好处

的行星。

在这个距离上,

在这张图表中以蓝色表示
不同温度的恒星,

行星可能足够温暖
,水可以在它们的表面上流动,

成为

可能存在生命的湖泊和海洋。

一些天文学家将他们的时间
和精力集中在寻找

距离恒星如此远的行星上。

我所做的事情会从他们的工作结束的地方开始。

我模拟了
系外行星的可能气候。

这就是为什么这很重要:

除了与恒星的距离之外,还有许多因素

可以控制
行星是否能够支持生命。

以金星为例。

它以罗马
爱与美女神的名字命名,

因为它
在天空中的外观温和而空灵。

但航天器测量
揭示了一个不同的故事。

表面温度
接近华氏900度,

摄氏500度。

那温度足以熔化铅。

原因是它厚厚的大气层,而不是它
与太阳的距离。

它会对类固醇产生温室效应,

吸收来自太阳的热量
并烧焦地球表面。

现实与
最初对这个星球的看法完全相反。

从我们自己的太阳系的这些经验教训中,

我们了解到行星的

大气层对其气候
和孕育生命的潜力至关重要。

我们不知道这些行星的大气是什么样的

因为
与它们的恒星相比,这些行星又小又暗

,而且离我们很远。

例如
,可以支持地表水的最近行星之一——

它被称为 Gliese 667 Cc——

一个如此迷人的名字,对,一个
不错的名字电话号码——

它距离我们 23 光年。

这就是超过 100 万亿英里。

试图测量

一颗
经过其主星前方的系外行星的大气成分是很困难的。

这就像试图看到一只果蝇

从汽车的前灯前经过。

好的,现在想象那辆车
在 100 万亿英里之外

,你想知道
那只苍蝇的确切颜色。

所以我使用计算机模型

来计算
行星需要什么样的大气

才能有
适合水和生命的气候。

这是艺术家
对 Kepler-62f 行星的概念,

以地球为参考。

它距离地球 1,200 光年

,仅比地球大 40%。

我们由 NSF 资助的工作发现,它
的温度足以容纳

来自多种大气
和轨道方向的开放水域。

所以我希望未来的望远镜
能在这个星球上追踪

寻找生命的迹象。

行星表面的冰
对气候也很重要。

冰吸收更长、
更红波长的光,

并反射更短、更蓝的光。

这就是为什么
这张照片中的冰山看起来如此蓝色。

太阳发出的红光
在穿过冰层的过程中被吸收了。

只有蓝光
使它一直到底部。

然后它被反射
回我们的眼睛

,我们看到蓝色的冰。

我的模型表明,
围绕较冷恒星运行的行星

实际上可能
比围绕较热恒星运行的行星更温暖。

还有另一个矛盾

——冰吸收了
来自较冷恒星的较长波长的光,

而这种光,这种能量,
加热了冰。

使用气候模型来探索

这些矛盾
如何影响行星气候

对于在其他地方寻找生命至关重要。

毫不奇怪
,这是我的专长。

我是一名非裔美国女天文学家

,也是一名受过古典训练的演员

,喜欢化妆
和阅读时尚杂志,

所以我有独特的定位来欣赏
自然界的矛盾——

(笑声)

(掌声)

……以及它们如何传达信息 我们正在
寻找下一个存在生命的星球。

我的组织 Rising Stargirls

使用戏剧、写作和视觉艺术向有色人种中学女生教授天文学。

这是另一个矛盾——
科学和艺术并不经常在一起,

但将它们交织在一起可以帮助
这些女孩全身心

地投入所学

,也许有一天会加入

充满矛盾的天文学家的行列,

并利用她们的背景
一劳永逸地发现,

我们在宇宙中真的并不孤单

谢谢你。

(掌声)