Sara Seager The search for planets beyond our solar system

I’m here to tell you
about the real search for alien life.

Not little green humanoids
arriving in shiny UFOs,

although that would be nice.

But it’s the search for planets
orbiting stars far away.

Every star in our sky is a sun.

And if our sun has planets –

Mercury, Venus, Earth, Mars, etc.,

surely those other stars
should have planets also,

and they do.

And in the last two decades,

astronomers have found
thousands of exoplanets.

Our night sky is literally
teeming with exoplanets.

We know, statistically speaking,

that every star has at least one planet.

And in the search for planets,

and in the future,
planets that might be like Earth,

we’re able to help address

some of the most amazing
and mysterious questions

that have faced humankind for centuries.

Why are we here?

Why does our universe exist?

How did Earth form and evolve?

How and why did life originate
and populate our planet?

The second question
that we often think about is:

Are we alone?

Is there life out there?

Who is out there?

You know, this question has been around
for thousands of years,

since at least the time
of the Greek philosophers.

But I’m here to tell you
just how close we’re getting

to finding out the answer
to this question.

It’s the first time in human history
that this really is within reach for us.

Now when I think about the possibilities
for life out there,

I think of the fact that our sun
is but one of many stars.

This is a photograph of a real galaxy,

we think our Milky Way
looks like this galaxy.

It’s a collection of bound stars.

But our [sun] is one
of hundreds of billions of stars

and our galaxy is one of upwards
of hundreds of billions of galaxies.

Knowing that small planets
are very common,

you can just do the math.

And there are just so many stars
and so many planets out there,

that surely, there must be life
somewhere out there.

Well, the biologists get furious
with me for saying that,

because we have absolutely no evidence
for life beyond Earth yet.

Well, if we were able to look
at our galaxy from the outside

and zoom in to where our sun is,

we see a real map of the stars.

And the highlighted stars
are those with known exoplanets.

This is really just
the tip of the iceberg.

Here, this animation is zooming in
onto our solar system.

And you’ll see here the planets

as well as some spacecraft
that are also orbiting our sun.

Now if we can imagine going
to the West Coast of North America,

and looking out at the night sky,

here’s what we’d see on a spring night.

And you can see
the constellations overlaid

and again, so many stars with planets.

There’s a special patch of the sky
where we have thousands of planets.

This is where the Kepler Space Telescope
focused for many years.

Let’s zoom in and look
at one of the favorite exoplanets.

This star is called Kepler-186f.

It’s a system of about five planets.

And by the way, most of these exoplanets,
we don’t know too much about.

We know their size, and their orbit
and things like that.

But there’s a very special planet
here called Kepler-186f.

This planet is in a zone
that is not too far from the star,

so that the temperature
may be just right for life.

Here, the artist’s conception
is just zooming in

and showing you what that planet
might be like.

So, many people have this
romantic notion of astronomers

going to the telescope
on a lonely mountaintop

and looking at the spectacular night sky
through a big telescope.

But actually, we just work
on our computers like everyone else,

and we get our data by email
or downloading from a database.

So instead of coming here to tell you

about the somewhat tedious nature
of the data and data analysis

and the complex computer models we make,

I have a different way
to try to explain to you

some of the things
that we’re thinking about exoplanets.

Here’s a travel poster:

“Kepler-186f:

Where the grass is always redder
on the other side.”

That’s because Kepler-186f
orbits a red star,

and we’re just speculating
that perhaps the plants there,

if there is vegetation
that does photosynthesis,

it has different pigments and looks red.

“Enjoy the gravity on HD 40307g,

a Super-Earth.”

This planet is more massive than Earth

and has a higher surface gravity.

“Relax on Kepler-16b,

where your shadow always has company.”

(Laughter)

We know of a dozen planets
that orbit two stars,

and there’s likely many more out there.

If we could visit one of those planets,

you literally would see two sunsets

and have two shadows.

So actually, science fiction
got some things right.

Tatooine from Star Wars.

And I have a couple of other
favorite exoplanets

to tell you about.

This one is Kepler-10b,

it’s a hot, hot planet.

It orbits over 50 times closer to its star

than our Earth does to our sun.

And actually, it’s so hot,

we can’t visit any
of these planets, but if we could,

we would melt long before we got there.

We think the surface
is hot enough to melt rock

and has liquid lava lakes.

Gliese 1214b.

This planet, we know the mass and the size

and it has a fairly low density.

It’s somewhat warm.

We actually don’t know
really anything about this planet,

but one possibility
is that it’s a water world,

like a scaled-up version
of one of Jupiter’s icy moons

that might be 50 percent water by mass.

And in this case, it would have
a thick steam atmosphere

overlaying an ocean,

not of liquid water,

but of an exotic form
of water, a superfluid –

not quite a gas, not quite a liquid.

And under that wouldn’t be rock,

but a form of high-pressure ice,

like ice IX.

So out of all these planets out there,

and the variety
is just simply astonishing,

we mostly want to find the planets
that are Goldilocks planets, we call them.

Not too big, not too small,

not too hot, not too cold –

but just right for life.

But to do that,
we’d have to be able to look

at the planet’s atmosphere,

because the atmosphere
acts like a blanket trapping heat –

the greenhouse effect.

We have to be able to assess
the greenhouse gases

on other planets.

Well, science fiction
got some things wrong.

The Star Trek Enterprise

had to travel vast distances
at incredible speeds

to orbit other planets

so that First Officer Spock
could analyze the atmosphere

to see if the planet was habitable

or if there were lifeforms there.

Well, we don’t need
to travel at warp speeds

to see other planet atmospheres,

although I don’t want to dissuade
any budding engineers

from figuring out how to do that.

We actually can and do study
planet atmospheres

from here, from Earth orbit.

This is a picture, a photograph
of the Hubble Space Telescope

taken by the shuttle Atlantis
as it was departing

after the last
human space flight to Hubble.

They installed a new camera, actually,

that we use for exoplanet atmospheres.

And so far, we’ve been able to study
dozens of exoplanet atmospheres,

about six of them in great detail.

But those are not
small planets like Earth.

They’re big, hot planets
that are easy to see.

We’re not ready,

we don’t have the right technology yet
to study small exoplanets.

But nevertheless,

I wanted to try to explain to you
how we study exoplanet atmospheres.

I want you to imagine,
for a moment, a rainbow.

And if we could look
at this rainbow closely,

we would see that some
dark lines are missing.

And here’s our sun,

the white light of our sun split up,

not by raindrops, but by a spectrograph.

And you can see
all these dark, vertical lines.

Some are very narrow, some are wide,

some are shaded at the edges.

And this is actually how astronomers
have studied objects in the heavens,

literally, for over a century.

So here, each different atom and molecule

has a special set of lines,

a fingerprint, if you will.

And that’s how we study
exoplanet atmospheres.

And I’ll just never forget
when I started working

on exoplanet atmospheres 20 years ago,

how many people told me,

“This will never happen.

We’ll never be able to study them.
Why are you bothering?”

And that’s why I’m pleased to tell you
about all the atmospheres studied now,

and this is really a field of its own.

So when it comes to
other planets, other Earths,

in the future when we can observe them,

what kind of gases
would we be looking for?

Well, you know, our own Earth
has oxygen in the atmosphere

to 20 percent by volume.

That’s a lot of oxygen.

But without plants
and photosynthetic life,

there would be no oxygen,

virtually no oxygen in our atmosphere.

So oxygen is here because of life.

And our goal then is to look for gases
in other planet atmospheres,

gases that don’t belong,

that we might be able
to attribute to life.

But which molecules should we search for?

I actually told you
how diverse exoplanets are.

We expect that to continue in the future

when we find other Earths.

And that’s one of the main things
I’m working on now,

I have a theory about this.

It reminds me that nearly every day,

I receive an email or emails

from someone with a crazy theory
about physics of gravity

or cosmology or some such.

So, please don’t email me
one of your crazy theories.

(Laughter)

Well, I had my own crazy theory.

But, who does the MIT professor go to?

Well, I emailed a Nobel Laureate
in Physiology or Medicine

and he said, “Sure, come and talk to me.”

So I brought my two biochemistry friends

and we went to talk to him
about our crazy theory.

And that theory was that life
produces all small molecules,

so many molecules.

Like, everything I could think of,
but not being a chemist.

Think about it:

carbon dioxide, carbon monoxide,

molecular hydrogen, molecular nitrogen,

methane, methyl chloride –

so many gases.

They also exist for other reasons,

but just life even produces ozone.

So we go to talk to him about this,

and immediately, he shot down the theory.

He found an example that didn’t exist.

So, we went back to the drawing board

and we think we have found something
very interesting in another field.

But back to exoplanets,

the point is that life produces
so many different types of gases,

literally thousands of gases.

And so what we’re doing now
is just trying to figure out

on which types of exoplanets,

which gases could be attributed to life.

And so when it comes time
when we find gases

in exoplanet atmospheres

that we won’t know
if they’re being produced

by intelligent aliens or by trees,

or a swamp,

or even just by simple,
single-celled microbial life.

So working on the models

and thinking about biochemistry,

it’s all well and good.

But a really big challenge
ahead of us is: how?

How are we going to find these planets?

There are actually many ways
to find planets,

several different ways.

But the one that I’m most focused on
is how can we open a gateway

so that in the future,

we can find hundreds of Earths.

We have a real shot
at finding signs of life.

And actually, I just finished
leading a two-year project

in this very special phase

of a concept we call the starshade.

And the starshade
is a very specially shaped screen

and the goal is to fly that starshade

so it blocks out the light of a star

so that the telescope
can see the planets directly.

Here, you can see myself
and two team members

holding up one small part
of the starshade.

It’s shaped like a giant flower,

and this is one of the prototype petals.

The concept is that a starshade
and telescope could launch together,

with the petals unfurling
from the stowed position.

The central truss would expand,

with the petals snapping into place.

Now, this has to be made very precisely,

literally, the petals to microns

and they have to deploy to millimeters.

And this whole structure would have to fly

tens of thousands of kilometers
away from the telescope.

It’s about tens of meters in diameter.

And the goal is to block out
the starlight to incredible precision

so that we’d be able to see
the planets directly.

And it has to be a very special shape,

because of the physics of defraction.

Now this is a real project
that we worked on,

literally, you would not believe how hard.

Just so you believe
it’s not just in movie format,

here’s a real photograph

of a second-generation
starshade deployment test bed in the lab.

And in this case,
I just wanted you to know

that that central truss
has heritage left over

from large radio deployables in space.

So after all of that hard work

where we try to think of all the crazy
gases that might be out there,

and we build the very
complicated space telescopes

that might be out there,

what are we going to find?

Well, in the best case,

we will find an image
of another exo-Earth.

Here is Earth as a pale blue dot.

And this is actually
a real photograph of Earth

taken by the Voyager 1 spacecraft,

four billion miles away.

And that red light is just scattered light
in the camera optics.

But what’s so awesome to consider

is that if there are intelligent aliens

orbiting on a planet
around a star near to us

and they build complicated
space telescopes

of the kind that we’re trying to build,

all they’ll see is this pale blue dot,

a pinprick of light.

And so sometimes, when I pause to think

about my professional struggle
and huge ambition,

it’s hard to think about that

in contrast to the vastness
of the universe.

But nonetheless, I am devoting
the rest of my life

to finding another Earth.

And I can guarantee

that in the next generation
of space telescopes,

in the second generation,

we will have the capability
to find and identity other Earths.

And the capability
to split up the starlight

so that we can look for gases

and assess the greenhouse gases
in the atmosphere,

estimate the surface temperature,

and look for signs of life.

But there’s more.

In this case of searching
for other planets like Earth,

we are making a new kind of map

of the nearby stars
and of the planets orbiting them,

including [planets] that actually might be
inhabitable by humans.

And so I envision that our descendants,

hundreds of years from now,

will embark on an interstellar
journey to other worlds.

And they will look back at all of us

as the generation who first found
the Earth-like worlds.

Thank you.

(Applause)

June Cohen: And I give you,
for a question,

Rosetta Mission Manager Fred Jansen.

Fred Jansen: You mentioned halfway through

that the technology
to actually look at the spectrum

of an exoplanet like Earth
is not there yet.

When do you expect this will be there,

and what’s needed?

Actually, what we expect is what we call
our next-generation Hubble telescope.

And this is called the James Webb
Space Telescope,

and that will launch in 2018,

and that’s what we’re going to do,

we’re going to look
at a special kind of planet

called transient exoplanets,

and that will be our first shot
at studying small planets

for gases that might indicate
the planet is habitable.

JC: I’m going to ask you
one follow-up question, too, Sara,

as the generalist.

So I am really struck
by the notion in your career

of the opposition you faced,

that when you began thinking
about exoplanets,

there was extreme skepticism
in the scientific community

that they existed,

and you proved them wrong.

What did it take to take that on?

SS: Well, the thing is that as scientists,

we’re supposed to be skeptical,

because our job to make sure
that what the other person is saying

actually makes sense or not.

But being a scientist,

I think you’ve seen it from this session,

it’s like being an explorer.

You have this immense curiosity,

this stubbornness,

this sort of resolute will
that you will go forward

no matter what other people say.

JC: I love that. Thank you, Sara.

(Applause)

我在这里告诉你
关于真正寻找外星生命的故事。

不是小的绿色类人生物
乘坐闪亮的不明飞行物到达,

尽管那会很好。

但它是在寻找
绕着遥远恒星运行的行星。

我们天空中的每颗星星都是太阳。

如果我们的太阳有行星——

水星、金星、地球、火星等,

那么其他恒星肯定
也应该有行星,

而且它们确实有。

在过去的二十年里,

天文学家已经发现了
数千颗系外行星。

我们的夜空确实
充满了系外行星。

我们知道,从统计学上讲

,每颗恒星都至少有一颗行星。

在寻找行星的过程中,

以及在未来寻找
可能像地球一样的行星时,

我们能够帮助解决几个世纪以来人类面临的

一些最令人惊奇
和最神秘的

问题。

我们为什么在这里?

为什么我们的宇宙存在?

地球是如何形成和演化的?

生命是如何以及为什么起源
和居住在我们的星球上的? 我们经常思考

的第二个问题
是:

我们孤独吗?

外面有生命吗?

谁在外面?

你知道,这个问题已经存在
了数千年

,至少
从希腊哲学家的时代开始。

但我在这里告诉你
,我们离

找到这个问题的答案有多近

这是人类历史上第一次
真正触手可及。

现在,当我想到
那里存在生命的可能性时,

我想到了这样一个事实,即我们的太阳
只是众多恒星中的一颗。

这是一张真实星系的照片,

我们认为我们的银河系
看起来像这个星系。

这是绑定的星星的集合。

但是我们的[太阳]是
数千亿颗恒星

之一,我们的银河系
是数千亿个星系之一。

知道小行星
很常见,

你可以做数学。

那里有这么多恒星
和这么多行星

,当然,那里一定有生命

好吧,生物学家
对我这么说很生气,

因为我们绝对没有证据表明
地球以外的生命存在。

好吧,如果我们能够
从外部观察银河系

并放大到太阳所在的位置,

我们就会看到真实的恒星地图。

突出显示的恒星
是那些已知系外行星的恒星。

这真的
只是冰山一角。

在这里,这个动画正在放大
我们的太阳系。

你会在这里看到行星

以及
一些也在绕太阳运行的航天器。

现在,如果我们可以想象
去北美西海岸

,眺望夜空,

这就是我们在春夜看到的景象。

你可以

一次又一次地看到星座重叠,这么多恒星和行星。

有一块特殊的天空
,我们有成千上万的行星。

这是开普勒太空望远镜
多年来关注的地方。

让我们放大并
看看最喜欢的系外行星之一。

这颗恒星被称为 Kepler-186f。

这是一个由大约五个行星组成的系统。

顺便说一句,这些系外行星中的大多数,
我们都不太了解。

我们知道它们的大小,它们的轨道
和类似的东西。

但是这里有一颗非常特别的行星
,叫做 Kepler-186f。

这颗行星位于
离恒星不太远的区域,

因此温度
可能正好适合生命存在。

在这里,艺术家的构想
只是放大

,向你展示那个星球
可能是什么样子。

所以,很多人都抱有这样一种
浪漫的想法:

天文学家到偏僻山顶的望远镜前
,通过大望远镜

观察壮观的夜空

但实际上,我们只是
像其他人一样在我们的计算机上工作

,我们通过电子邮件
或从数据库下载来获取数据。

因此,我不是来这里告诉你数据和数据

分析的有些乏味的性质

以及我们制作的复杂计算机模型,

而是尝试用不同的方式
向你

解释我们正在考虑的一些关于系外行星的事情。

这是一张旅行海报:

“Kepler-186f:另一边

的草总是更红
。”

那是因为 Kepler-186f
绕着一颗红星运行

,我们只是
推测那里的植物,

如果有进行
光合作用的植被,

它有不同的色素,看起来是红色的。

“享受超级地球 HD 40307g 的重力

。”

这颗行星比地球质量更大,

并且具有更高的表面重力。

“在 Kepler-16b 上放松一下

,你的影子总是有伴。”

(笑声)

我们知道有十几个
行星围绕两颗恒星运行,

而且可能还有更多。

如果我们可以访问其中一颗行星,

您实际上会看到两次日落

并有两个阴影。

所以实际上,科幻小说
做对了一些事情。

《星球大战》中的塔图因。

我还有其他几个
最喜欢的系外行星

要告诉你。

这颗是 Kepler-10b,

它是一颗炽热、炽热的星球。

它的轨道距离它的恒星

比地球距离太阳的距离近 50 倍。

实际上,它太热了,

我们无法访问
这些行星中的任何一个,但如果可以的话,

我们会在到达那里之前很久就融化了。

我们认为地表
足够热,可以融化岩石,

并且有液态熔岩湖。

格利泽 1214b。

我们知道这颗行星的质量和大小,

而且它的密度相当低。

它有些温暖。

我们
实际上对这颗行星一无所知,

但一种可能性
是它是一个水世界,

就像
木星冰卫星之一的放大版本,

按质量计算可能含有 50% 的水。

在这种情况下,它会有
一层厚厚的蒸汽大气层

覆盖着海洋,

不是液态水,

而是一种奇异
的水,一种超流体——

不是气体,也不是液体。

在那下面不会是岩石,

而是一种高压冰,

比如冰 IX。

因此,在所有这些行星中

,种类
繁多,简直令人惊讶,

我们最想找到
属于金发姑娘行星的行星,我们称它们为“金发姑娘”行星。

不太大,不太小,

不太热,也不太冷——

但适合生活。

但要做到这一点,
我们必须能够

观察地球的大气层,

因为大气层
就像毯子一样吸收热量

——温室效应。

我们必须能够评估

其他行星上的温室气体。

好吧,科幻小说
有一些错误。

星际迷航企业号

必须
以令人难以置信的

速度远距离绕行其他行星,

以便副驾驶史波克
可以分析大气

,看看这颗行星是否适合居住,

或者那里是否有生命形式。

好吧,我们不需要
以曲速旅行

来观察其他行星的大气层,

尽管我不想劝阻
任何崭露头角的

工程师弄清楚如何做到这一点。

实际上,我们可以并且确实

从地球轨道从这里研究行星大气。

这是一张照片,是

亚特兰蒂斯号航天飞机

在最后一次
人类太空飞行到哈勃后离开时拍摄的哈勃太空望远镜的照片。

实际上,他们安装了一台新相机

,我们将其用于系外行星大气。

到目前为止,我们已经能够研究
数十个系外行星大气,其中

大约有六个非常详细。

但那些不是
像地球这样的小行星。

它们是很容易看到的又大又热的行星

我们还没有准备好,

我们还没有合适的技术
来研究小型系外行星。

但是,尽管如此,

我还是想尝试向您解释我们是
如何研究系外行星大气的。

我想让你
想象一下,彩虹。

如果我们能
仔细观察这道彩虹,

我们会发现一些
暗线不见了。

这是我们的太阳,

我们太阳的白光

不是被雨滴而是被光谱仪分开的。

你可以看到
所有这些黑暗的垂直线条。

有些很窄,有些很宽,

有些边缘有阴影。

这实际上是天文学家
研究天体的方式,

从字面上看,一个多世纪以来。

所以在这里,每个不同的原子和分子

都有一组特殊的线条,

一个指纹,如果你愿意的话。

这就是我们研究系
外行星大气的方式。

我永远不会忘记 20
年前我开始研究系

外行星大气时,有

多少人告诉我,

“这永远不会发生。

我们永远无法研究它们。
你为什么要打扰?”

这就是为什么我很高兴向您
介绍现在研究的所有大气

,这确实是一个独立的领域。

那么当涉及到
其他行星,其他地球

时,将来我们可以观察到它们时,我们会寻找

什么样的气体

嗯,你知道,我们自己的地球
大气中的氧气

含量高达 20%。

那是很多氧气。

但是没有植物
和光合生命,

就没有氧气,

我们的大气中几乎没有氧气。

所以氧气在这里是因为生命。

然后我们的目标是寻找
其他行星大气中的

气体,不属于

我们的气体,我们可以
将其归因于生命。

但是我们应该寻找哪些分子呢?

我实际上告诉过你系
外行星的多样性。 当我们发现其他地球时

,我们预计这种情况会在未来继续

这是我现在正在做的主要事情之一,

我对此有一个理论。

它提醒我,几乎每天,

我都会收到一封或多封电子邮件,

来自某个
对引力物理学

或宇宙学等有着疯狂理论的人。

所以,请不要把
你的疯狂理论发邮件给我。

(笑声)

好吧,我有自己的疯狂理论。

但是,麻省理工学院的教授找谁呢?

好吧,我给一位诺贝尔生理学或医学奖获得者发了电子邮件

,他说:“当然,来和我谈谈。”

所以我带来了我的两个生物化学朋友

,我们去和他
谈谈我们疯狂的理论。

这个理论是生命
产生所有小分子,

如此多的分子。

就像,我能想到的一切,
但不是化学家。

想一想:

二氧化碳、一氧化碳、

分子氢、分子氮、

甲烷、氯甲烷——

这么多气体。

它们也因其他原因而存在,

但只是生命甚至会产生臭氧。

所以我们去和他谈谈这件事

,他立刻否定了这个理论。

他找到了一个不存在的例子。

所以,我们回到绘图板上

,我们认为我们在另一个领域发现了一些
非常有趣的东西。

但回到系外行星

,关键是生命会产生
如此多不同类型的气体,

实际上是数千种气体。

所以我们现在所做
的只是试图

弄清楚哪些类型的系外行星,

哪些气体可以归因于生命。

因此,
当我们

在系外行星大气

中发现气体时,我们将不
知道它们是

由聪明的外星人产生还是由树木

或沼泽产生,

甚至是由简单的
单细胞微生物生命产生。

因此,研究模型

并考虑生物化学,

一切都很好。


摆在我们面前的一个真正巨大的挑战是:如何?

我们将如何找到这些行星?

实际上有很多方法
可以找到行星,

几种不同的方法。

但我最关注的
是我们如何打开一个门户,

以便在未来,

我们可以找到数百个地球。

我们有
机会寻找生命迹象。

事实上,我刚刚完成
了一个为期两年的项目,

在这个

我们称之为星空的概念的非常特殊的阶段。

星罩
是一个非常特殊形状的屏幕

,目标是让星罩飞起来,

这样它就可以挡住恒星的光,

这样望远镜
就可以直接看到行星。

在这里,您可以看到我
和两名团队成员

举着一小
部分星影。

它的形状像一朵巨大的花朵

,这是原型花瓣之一。

这个概念是星罩
和望远镜可以一起发射

,花瓣
从收起位置展开。

中央桁架会膨胀

,花瓣会卡入到位。

现在,这必须非常精确,

从字面上看,花瓣到微米

,它们必须展开到毫米。

而整个结构必须飞离望远镜

数万公里

它的直径大约有几十米。

目标是以
难以置信的精度阻挡星光,

以便我们能够
直接看到行星。

而且它必须是一个非常特殊的形状,

因为折射的物理特性。

现在这是一个我们正在开展的真正项目

从字面上看,你不会相信有多难。

只是为了让您相信
它不仅仅是电影格式,

是实验室中第二代遮光罩部署测试台的真实照片。

在这种情况下,
我只是想让你知道

,那个中央桁架

太空中大型无线电部署遗留下来的遗产。

因此,

在我们努力思考可能存在的所有疯狂
气体,

并建造了可能存在的非常
复杂的太空望远镜

之后,

我们会发现什么?

好吧,在最好的情况下,

我们会找到
另一个地外地球的图像。

这是地球,是一个淡蓝色的点。

而这实际上
是四十亿英里外

的航海者一号宇宙飞船拍摄的地球真实照片

而那红光只是
相机光学系统中的散射光。

但令人敬畏的

是,如果有聪明的外星人

在围绕我们附近的一颗恒星运行的行星上运行,

并且他们建造

了我们正在尝试建造的那种复杂的太空望远镜

,他们将看到的只是这个淡蓝色的点 ,

一缕光。

所以有时候,当我停下来

思考我的职业奋斗
和巨大的抱负时,

很难

想象与浩瀚
的宇宙相比。

但尽管如此,
我的余生都

致力于寻找另一个地球。

我可以保证

,在
下一代太空望远镜中,

在第二代中,

我们将有
能力发现和识别其他地球。

以及
分裂星光的能力,

以便我们可以寻找气体

并评估
大气中的温室气体,

估计表面温度

并寻找生命迹象。

但还有更多。

在这种
寻找像地球这样的其他行星的情况下,

我们正在制作一种新的地图

,显示附近的恒星
和围绕它们运行的行星,

包括实际上可能适合
人类居住的[行星]。

因此,我设想我们的后代,

数百年后,

将踏上
前往其他世界的星际之旅。

他们将回顾我们所有人

作为最先
发现类地世界的一代人。

谢谢你。

(掌声)

June Cohen:我问
你一个问题,

Rosetta Mission 经理 Fred Jansen。

Fred Jansen:你在中途提到

,实际观察

像地球这样的系外行星光谱的技术
还没有出现。

你预计什么时候会出现

,需要什么?

实际上,我们所期待的就是我们所说
的下一代哈勃望远镜。

这就是詹姆斯韦伯
太空望远镜

,它将在 2018 年发射

,这就是我们要做的,

我们要
观察一种

叫做瞬态系外行星的特殊行星

,这将是我们的第一枪
在研究

可能表明
该行星适合居住的小行星的气体。

JC:作为多面手,我还要问你
一个后续问题,Sara

所以我真的
对你在职业生涯

中所面临的反对意见感到震惊

,当你开始考虑系
外行星时,

科学界

对它们的存在抱有极大的怀疑,

而你证明它们是错误的。

采取什么措施?

SS:嗯,问题是,作为科学家,

我们应该持怀疑态度,

因为我们的工作是
确保对方所说的话

是否真的有意义。

但作为一名科学家,

我想你已经从这次会议中看到了,

这就像一个探险家。

你有这种天大的好奇心,有

这种固执,有

这种

不管别人说什么你都要勇往直前的坚定意志。

JC:我喜欢那个。 谢谢你,萨拉。

(掌声)