The dust bunnies that built our planet Lorin Swint Matthews

Consider the spot where you’re sitting.

Travel backwards in time

and it might’ve been submerged at
the bottom of a shallow sea,

buried under miles of rock,

or floating through a molten,
infernal landscape.

But go back far enough—

about 4.6 billion years,

and you’d be in the middle of an enormous
cloud of dust and gas

orbiting a newborn star.

This is the setting for some of the
biggest, smallest mysteries of physics:

the mysteries of cosmic dust bunnies.

Seemingly empty regions
of space between stars

actually contain clouds of gas and dust,

usually blown there by supernovas.

When a dense cloud reaches a certain
threshold called the Jeans mass,

it collapses in on itself.

The shrinking cloud rotates faster
and faster, and heats up,

eventually becoming hot enough to burn
hydrogen in its core.

At this point a star is born.

As fusion begins in the new star,

it sends out jets of gas that blow
off the top and bottom of the cloud,

leaving behind an orbiting ring of gas
and dust called a protoplanetary disk.

This is a surprisingly windy place;

eddies of gas carry particles apart,
and send them smashing into each other.

The dust consists of tiny metal fragments,
bits of rock, and, further out, ices.

We’ve observed thousands of these disks
in the sky,

at various stages of development

as dust clumps together
into larger and larger masses.

Dust grains 100 times smaller than the
width of a human hair stick to each other

through what’s called
the van der Waals force.

That’s where a cloud of electrons
shifts to one side of a molecule,

creating a negative charge on one end,
and a positive charge on the other.

Opposites attract, but van der Waals can
only hold tiny things together.

And there’s a problem: once dust
clusters grow to a certain size,

the windy atmosphere of a disk should
constantly break them up

as they crash into each other.

The question of how they continue to grow
is the first mystery of dust bunnies.

One theory looks to electrostatic charge
to answer this.

Energetic gamma rays, x-rays,
and UV photons

knock electrons off of gas
atoms within the disk,

creating positive ions
and negative electrons.

Electrons run into and stick to dust,

making it negatively charged.

Now, when the wind pushes
clusters together,

like repels like
and slows them down as they collide.

With gentle collisions
they won’t fragment,

but if the repulsion is too strong,
they’ll never grow.

One theory suggests that high energy
particles

can knock more electrons off of some
dust clumps,

leaving them positively charged.

Opposites again attract,
and clusters grow rapidly.

But before long we reach
another set of mysteries.

We know from evidence found in meteorites

that these fluffy dust bunnies
eventually get heated, melted

and then cooled into solid
pellets called chondrules.

And we have no idea how
or why that happens.

Furthermore, once those pellets do form,
how do they stick together?

The electrostatic forces from before
are too weak,

and small rocks can’t be held together
by gravity either.

Gravity increases proportionally to the
mass of the objects involved.

That’s why you could effortlessly escape
an asteroid the size of a small mountain

using just the force generated
by your legs.

So if not gravity, then what?

Perhaps it’s dust.

A fluffy dust rim collected around the
outside of the pellets

could act like Velcro.

There’s evidence for this in meteors,

where we find many chondrules surrounded
by a thin rim of very fine material–

possibly condensed dust.

Eventually the chondrule pellets get
cemented together inside larger rocks,

which at about 1 kilometer across

are finally large enough to hold
themselves together through gravity.

They continue to collide and grow
into larger and larger bodies,

including the planets we know today.

Ultimately, the seeds of
everything familiar–

the size of our planet, its position
within the solar system,

and its elemental composition–

were determined by an uncountably large
series of random collisions.

Change the dust cloud just a bit,

and perhaps the conditions wouldn’t
have been right

for the formation of life on our planet.

考虑你坐的地方。

时光

倒流,它可能被淹没在
浅海的底部,

被埋在数英里的岩石下,

或者漂浮在熔融的
地狱景观中。

但如果回溯到足够远的地方——

大约 46 亿年

,你就会置身于围绕一颗新生恒星运行的巨大
尘埃和气体云的中间

这是
物理学中一些最大、最小的谜团的背景:

宇宙尘埃兔子的谜团。

恒星之间看似空旷的空间区域

实际上包含气体和尘埃云,

通常由超新星吹到那里。

当稠密的云达到
称为牛仔裤质量的某个阈值时,

它会自行塌陷。

正在缩小的云旋转得
越来越快,并升温,

最终变得足够热,可以
在其核心燃烧氢。

这时一颗星星诞生了。

当新恒星开始聚变时,

它会喷出气体射流,
从云的顶部和底部吹出,

留下一个由气体和尘埃组成的轨道环,
称为原行星盘。

这是一个出奇的多风的地方;

气体涡流将粒子分开,
并将它们相互撞击。

尘埃由微小的金属碎片、
岩石碎片以及更远的冰块组成。

我们已经在天空中观察到数千个这样的圆盘
,它们

处于不同的发展阶段,

因为尘埃聚集在一起,
形成越来越大的质量。

比人类头发宽度小 100 倍的尘埃颗粒

通过所谓
的范德华力相互粘附。

这就是电子云
转移到分子一侧的地方,

在一端产生负电荷,
在另一端产生正电荷。

异性相吸,但范德华
只能把微小的东西放在一起。

还有一个问题:一旦尘埃
团长到一定大小,

圆盘的大风大气会在它们相互碰撞时
不断地将它们

分解。

它们如何继续生长的问题
是尘兔的第一个谜团。

一种理论着眼于静电荷
来回答这个问题。

高能伽马射线、X 射线
和紫外线光子

将电子从
圆盘内的气体原子中敲出,

产生正离子
和负电子。

电子进入并粘在灰尘上,

使其带负电。

现在,当风将星团推到
一起时,

它们会互相排斥,并在它们碰撞时减慢它们的速度。

轻轻碰撞
它们不会碎裂,

但如果排斥力太强,
它们就永远不会长大。

一种理论认为,高能
粒子

可以将更多的电子从一些
尘埃团中击出,

使它们带正电。

对立面再次相吸
,集群迅速增长。

但不久之后,我们就遇到了
另一组谜团。

我们从陨石中发现的证据

得知,这些蓬松的尘埃兔子
最终会被加热、融化

,然后冷却成
称为球粒的固体颗粒。

而且我们不知道这是如何
发生的,或者为什么会发生。

此外,一旦这些颗粒形成,
它们是如何粘在一起的?

以前的静电力
太弱了

,小石头也不能
靠重力粘在一起。

重力与
所涉及物体的质量成比例增加。

这就是为什么你可以用你的腿产生的力量毫不费力地逃离
一座小山那么大的小行星

所以如果不是重力,那又是什么呢?

也许是灰尘。

聚集在颗粒外部的蓬松灰尘边缘

可以起到魔术贴的作用。

流星中有证据表明这一点,

我们发现许多球粒被
非常精细的材料(

可能是凝结的尘埃)的薄边缘包围。

最终,球粒颗粒
在更大的岩石中粘合

在一起,大约 1 公里宽

的岩石最终大到足以
通过重力将它们自身固定在一起。

它们继续碰撞并成长
为越来越大的天体,

包括我们今天所知道的行星。

最终,所有熟悉事物的种子——

我们星球的大小、它
在太阳系中的位置

以及它的元素组成——

都是由无数
次的随机碰撞决定的。

稍微改变一下尘埃云

,也许

我们星球上的生命形成条件就不适合了。