The living tech we need to support human life on other planets Lynn Rothschild

Translator: Joseph Geni
Reviewer: Joanna Pietrulewicz

For thousands of years,
well, really probably millions of years,

our ancestors have looked up at the sky
and wondered what’s up there,

and they’ve also started to wonder,

hmm, could we be alone in this planet?

Now, I’m fortunate that I get to get paid
to actually ask some of those questions,

and sort of bad news for you,

your tax dollars are paying me
to try to answer some of those questions.

But then, about 10 years ago,

I was told, I mean asked,

if I would start to look at the technology
to help get us off planet,

and so that’s what I’m going
to talk to you about today.

So playing to the local crowd,

this is what it looks like
in your day-to-day life in Boston,

but as you start to go off planet,
things look very, very different.

So there we are,
hovering above the WGBH studios.

And here’s a very famous picture
of the Earthrise from the Moon,

and you can see the Earth
starting to recede.

And then what I love is this picture

that was taken from the surface of Mars
looking back at the Earth.

Can anyone find the Earth?

I’m going to help you out a little.

(Laughter)

Yeah.

The point of showing this
is that when people start to go to Mars,

they’re not going to be able
to keep calling in

and be micromanaged
the way people on a space station are.

They’re going to have to be independent.

So even though they’re up there,

there are going to be all sorts of things
that they’re going to need,

just like people on Earth
need things like, oh, transportation,

life support, food, clothing and so on.

But unlike on Earth,
they are also going to need oxygen.

They’re going to have to deal with about
a third of the gravity that we have here.

They’re going to have to worry
about habitats, power, heat, light

and radiation protection,

something that we don’t actually
worry about nearly as much on the Earth,

because we have this beautiful
atmosphere and magnetosphere.

The problem with that is
that we also have a lot of constraints.

So the biggest one for us is upmass,

and the number that I’ve used for years

is it costs about 10,000 dollars to launch
a can of Coke into low Earth orbit.

The problem is, there you are
with 10,000 dollars later,

and you’re still in low Earth orbit.

You’re not even at the Moon
or Mars or anything else.

So you’re going to have to
try to figure out

how to keep the mass as low as possible
so you don’t have to launch it.

But on top of that cost issue
with the mass,

you also have problems of storage

and flexibility and reliability.

You can’t just get there and say,
“Oops, I forgot to bring,”

because Amazon.com
just does not deliver to Mars.

So you better be prepared.

So what is the solution for this?

And I’m going to propose to you
for the rest of this talk

that the solution actually is life,

and when you start to look
at life as a technology,

you realize, ah, that’s it,

that’s exactly what we needed.

This plant here, like every person here

and every one of your dogs and cats

and plants and so on,

all started as a single cell.

So imagine, you’re starting
as a very low upmass object

and then growing into something
a good deal bigger.

Now, my hero Charles Darwin,

of course, reminds us that there’s
no such thing as a designer in biology,

but what if we now have the technology

to design biology,

maybe even design,
oh, whole new life-forms

that can do things for us
that we couldn’t have imagined otherwise?

So years ago, I was asked
to start to sell this program,

and while I was doing that,

I was put in front of a panel at NASA,

as you might sort of imagine,

a bunch of people in suits
and white shirts and pencil protectors,

and I did this sort of crazy, wild,

“This is all the next great thing,”

and I thought they would be blown over,

and instead the chairman of the committee
just looked at me straight in the eye,

and said, “So what’s the big idea?”

So I was like, “OK, you want Star Trek?

We’ll do Star Trek.”

And so let me tell you
what the big idea is.

We’ve used organisms
to make biomaterials for years.

So here’s a great picture
taken outside of Glasgow,

and you can see lots
of great biomaterials there.

There are trees that you could
use to build houses.

There are sheep where you
can get your wool from.

You could get leather from the sheep.

Just quickly glancing around the room,
I’ll bet there’s no one in this room

that doesn’t have some kind of animal
or plant product on them,

some kind of biomaterial.

But you know what?

We’re not going to take sheep
and trees and stuff to Mars.

That’s nuts, because
of the upmass problem.

But we are going to take things like this.

This is Bacillus subtilis.

Those white dots that you see are spores.

This happens to be a bacterium
that can form incredibly resistant spores,

and when I say incredibly resistant,
they’ve proven themselves.

Bacillus subtilis spores have been flown
on what was called LDEF,

Long Duration Exposure Facility,
for almost six years

and some of them survived that in space.

Unbelievable, a lot better
than any of us can do.

So why not just take the capabilities,

like to make wood or to make wool
or spider silk or whatever,

and put them in Bacillus subtilis spores,

and take those with you off planet?

So what are you going to do
when you’re off planet?

Here’s an iconic picture of Buzz Aldrin
looking back at the Eagle

when he landed, oh, it was almost
50 years ago, on the surface of the Moon.

Now if you’re going to go
to the Moon for three days

and you’re the first person to set foot,

yeah, you can live in a tin can,

but you wouldn’t want to do that
for, say, a year and a half.

So I did actually a calculation,
being in California.

I looked at what the average size
of a cell at Alcatraz is,

and I have news for you,

the volume in the Eagle there,
in the Lunar Module,

was about the size of a cell at Alcatraz

if it were only five feet high.

So incredibly cramped living quarters.

You just can’t ask a human
to stay in there for long periods of time.

So why not take these biomaterials
and make something?

So here’s an image
that a colleague of mine

who is an architect, Chris Maurer,
has done of what we’ve been proposing,

and we’ll get to the point

of why I’ve been standing up here
holding something

that looks like a dried sandwich
this whole lecture.

So we’ve proposed that the solution
to the habitat problem on Mars

could just simply lie in a fungus.

So I’m now probably
going to turn off everyone

from ever eating a mushroom again.

So let’s talk about fungi for a second.

So you’re probably familiar
with this fruiting body of the fungus.

That’s the mushroom.

But what we’re interested in actually
is what’s beneath the surface there,

the mycelium,

which are these root hair-like structures

that are really the main part
of the mushroom.

Well, it turns out you can take those –

there’s a micrograph I did –

and you can put them in a mold

and give them a little food –

and it doesn’t take much,
you can grow these things on sawdust –

so this piece here was grown on sawdust,

and that mycelium then
will fill that structure

to make something.

We’ve actually tried
growing mycelium on Mars Simulant.

So no one’s actually
gone to the surface of Mars,

but this is a simulated surface of Mars,

and you can see those
hair-like mycelia out there.

It’s really amazing stuff.

How strong can you make these things?

Well, you know, I could give you
numbers and tests and so on,

but I think that’s probably
the best way to describe it.

There’s one of my students
proving that you can do this.

To do this, then, you’ve got to figure out
how to put it in context.

How’s this actually going to happen?

I mean, this is a great idea, Lynn,

but how are you going to get
from here to there?

So what we’re saying is you grow up
the mycelium in the lab, for example

and then you fill up a little structure,
maybe a house-like structure that’s tiny,

that is maybe a double-bagged sort of
plastic thing, like an inflatable –

I sort of think L.L.Bean when I see this.

And then you put it in a rocket ship
and you send it off to Mars.

Rocket lands,

you release the bag

and you add a little water,

and voila, you’ve got your habitat.

You know, how cool would that be?

And the beauty of that is you don’t
have to take something prebuilt.

And so our estimates are that we could
save 90 percent of the mass

that NASA is currently proposing
by taking up a big steel structure

if we actually grow it on site.

So let me give you another big idea.

What about digital information?

What’s really interesting is
you have a physical link to your parents

and they have a physical link
to their parents, and so on,

all the way back to the origin of life.

You have never broken that continuum.

But the fact is that we can do that today.

So we have students
every day in our labs –

students in Boston even do this –

that make up DNA sequences

and they hit the “send” button

and they send them
to their local DNA synthesis company.

Now once you break that physical link

where you’re sending it across town,

it doesn’t matter if you’re sending it
across the Charles River

or if you’re sending
that information to Mars.

You’ve broken that physical link.

So then, once you’re on Mars,

or across the river or wherever,

you can take that digital information,

synthesize the physical DNA,

put it maybe in another organism

and voila, you’ve got
new capabilities there.

So again, you’ve broken
that physical link. That’s huge.

What about chemistry?

Biology does chemistry for us on Earth,

and again has for literally
thousands of years.

I bet virtually everyone in this room
has eaten something today

that has been made
by biology doing chemistry.

Let me give you a big hint there.

What about another idea?

What about using DNA itself
to make a wire?

Because again, we’re trying
to miniaturize everything.

DNA is really cheap.

Strawberries have
a gazillion amount of DNA.

You know, you could take
a strawberry with you, isolate the DNA,

and one of my students
has figured out a way

to take DNA and tweak it a little bit

so that you can incorporate
silver atoms in very specific places,

thus making an electrical wire.

How cool is that?

So while we’re on the subject of metals,

we’re going to need to use metals
for things like integrated circuits.

Probably we’re going to want it
for some structures, and so on.

And things like integrated circuits
ultimately go bad.

We could talk a lot about that,
but I’m going to leave it at that,

that they do go bad,

and so where are you going
to get those metals?

Yeah, you could try to mine them
with heavy equipment,

but you get that upmass problem.

And I always tell people, the best way
to find the metals for a new cell phone

is in a dead cell phone.

So what if you take biology

as the technology to get these metals out?

And how do you do this?

Well, take a look
at the back of a vitamin bottle

and you’ll get an idea
of all the sorts of metals

that we actually use in our bodies.

So we have a lot of proteins
as well as other organisms

that can actually
specifically bind metals.

So what if we now take those proteins

and maybe attach them
to this fungal mycelium

and make a filter so we can start
to pull those metals out

in a very specific way
without big mining equipment,

and, even better, we’ve actually
got a proof of concept

where we’ve then taken those metals
that we pulled out with proteins

and reprinted an integrated circuit
using a plasma printer.

Again, how cool?

Electricity: I was asked
by a head of one of the NASA centers

if you could ever take chemical energy
and turn that into electrical energy.

Well, the great news is it’s not
just the electric eel that does it.

Everybody in this room
who is still alive and functioning

is doing that.

Part of the food that you’ve eaten today

has gone to operate
the nerve cells in your body.

But even other organisms,
nonsentient ones,

are creating electric energy,

even bacteria.

Some bacteria are very good
at making little wires.

So if we can harvest that ability

of turning chemical energy
into electrical energy,

again, how cool would that be?

So here are some
of the big ideas we talked about.

Let me try one more: life 2.0.

So for example, all of the sugars
in our body are right-handed.

Why shouldn’t we make an organism
with left-handed sugars?

Why not make an organism that can do
things that no organism can do today?

So organisms normally have evolved
to live in very specific environments.

So here’s this lion cub
literally up a tree,

and I took a picture of him a bit later,

and he was a lot happier
when he was down on the ground.

So organisms are designed
for specific environments.

But what if you can go back
to that idea of synthetic biology

and tweak ‘em around?

So here is one of our favorite places
in Yellowstone National Park.

This is Octopus Springs.

If you tilt your head a little bit,

it sort of looks like a body
and tentacles coming out.

It’s above the boiling
temperature of water.

Those organisms that you see
on the edge and the colors

actually match the temperatures
that are there,

very, very high-temperature thermophiles.

So why not take organisms
that can live at extremes,

whether it’s high temperature
or low temperature

or low pH or high pH

or high salt or high levels of radiation,

and take some of those capabilities

and put it into other organisms.

And this is a project
that my students have called,

and I love this, the “hell cell.”

And so we’ve done that.

We’ve taken organisms and sort of
tweaked them and pushed them to the edges.

And this is important
for getting us off planet

and also for understanding
what life is like in the universe.

So let me give you
just a couple of final thoughts.

First is this whole idea
that we have all these needs

for human settlement off planet

that are in some ways
exactly like we have on the Earth,

that we need the food
and we need the shelter and so on,

but we have very, very
different constraints

of this upmass problem and the reliability
and the flexibility and so on.

But because we have these constraints
that you don’t have here,

where you might have to think about
the indigenous petrochemical industry,

or whatever,

you now have constraints
that have to unleash creativity.

And once you unleash this creativity
because you have the new constraints,

you’re forcing game-changing
technological advances

that you wouldn’t have gotten
any other way.

Finally, we have to think a little bit,

is it a good idea
to tinker around with life?

Well, the sort of easy answer to that is

that probably no one in the room
keeps a wolf cub at home,

but you might have a puppy or a dog;

you probably didn’t eat teosinte
this summer, but you ate corn.

We have been doing
genetic modification with organisms

for literally 10,000 or more years.

This is a different approach,
but to say all of a sudden

humans should never touch an organism

is kinda silly

because we have that capability now

to do things that are far more
beneficial for the planet Earth

and for life beyond that.

And so then the question is, should we?

And of course I feel
that not only should we,

at least for getting off Earth,

but actually if we don’t
use synthetic biology,

we will never solve this upmass problem.

So once you think of life as a technology,
you’ve got the solution.

And so, with that, I’d like to finish
the way I always finish,

and say “ad astra,”
which means, “to the stars.”

Thank you very much, Boston.

(Applause)

译者:Joseph
Geni 审稿人:Joanna Pietrulewicz

几千年来,
嗯,真的可能是几百万年,

我们的祖先一直仰望天空
,想知道那里有什么

,他们也开始怀疑,

嗯,我们能不能独处 在这个星球上?

现在,我很幸运能够得到报酬
来实际提出其中一些问题,这

对你来说是个坏消息,

你的税款支付给我
试图回答其中一些问题。

但是,大约 10 年前,

有人告诉我,我的意思是

问我是否会开始研究
帮助我们离开地球的技术

,所以这就是我
今天要和你谈论的内容。

因此,与当地人群玩耍,

这就是
您在波士顿的日常生活中的样子,

但是当您开始离开地球时,
情况看起来非常非常不同。

所以我们
在 WGBH 工作室上方徘徊。

这是一张非常
有名的月球

地球升起照片,你可以看到地球
开始后退。

然后我喜欢这张

从火星表面
回望地球的照片。

谁能找到地球?

我会帮你一点点的。

(笑声)

是的。

展示这一点的重点
是,当人们开始前往火星时,

他们将无法

像空间站上的人们那样继续打电话并进行微观管理。

他们将不得不独立。

所以即使他们在上面,

他们也会需要各种各样的东西

就像地球上的人们
需要交通、

生命支持、食物、衣服等等。

但与地球不同的是,
它们也需要氧气。

他们将不得不处理
我们这里大约三分之一的重力。

他们将不得不
担心栖息地、电力、热量、

光和辐射保护,

这些我们实际上
在地球上几乎没有那么担心,

因为我们拥有美丽的
大气层和磁层。

问题
是我们也有很多限制。

所以对我们来说最大的是upmass

,我多年来一直使用的数字

是将
一罐可乐发射到近地轨道需要大约10,000美元。

问题是
,10,000 美元之后

,你仍然在低地球轨道上。

你甚至不在月球
或火星或其他任何地方。

因此,您将不得不
尝试弄清楚

如何将质量保持在尽可能低的水平,
这样您就不必启动它。

但除了质量问题之外

您还面临存储

、灵活性和可靠性问题。

你不能只是到那里说,
“糟糕,我忘了带”,

因为 Amazon.com
只是不送货到火星。

所以你最好做好准备。

那么解决这个问题的方法是什么?

在接下来的演讲

中,我将向你建议,解决方案实际上就是生命

,当你开始
将生命视为一种技术时,

你会意识到,啊,就是这样,

这正是我们所需要的。

这里的植物,就像这里

的每一个人,你的每一只狗、猫

和植物等等,

都是从一个细胞开始的。

所以想象一下,你
从一个非常低质量的物体开始

,然后成长为
一个更大的物体。

现在,我的英雄查尔斯达尔文

,当然,提醒我们
生物学中没有设计师这样的东西,

但是如果我们现在拥有

设计生物学的技术,

甚至可能设计,

,可以做事情的全新生命形式 对我们
来说,我们无法想象?

所以几年前,我被
要求开始销售这个程序

,当我这样做的时候,

我被放在美国宇航局的一个小组前,

正如你可能想象的那样,

一群穿着西装
、白衬衫和铅笔的人 保护者

,我做了这种疯狂的,狂野的,

“这就是下一个伟大的事情,

”我以为他们会被吹倒

,相反,委员会主席
只是直视着我的

眼睛说, “那么有什么大主意?”

所以我想,“好吧,你想要星际迷航?

我们会做星际迷航。”

所以让我告诉你
什么是伟大的想法。 多年来,

我们一直在使用
有机体制造生物材料。

这是在格拉斯哥以外拍摄的一张很棒的照片

,你可以
在那里看到很多很棒的生物材料。

有些树木可以
用来建造房屋。

有羊
可以从那里得到羊毛。

你可以从羊身上得到皮革。

只要快速扫视一下房间,
我敢打赌,这个房间

里没有人没有某种动物
或植物产品,

某种生物材料。

但你知道吗?

我们不会把羊
和树之类的东西带到火星上。

这太
疯狂了,因为质量问题。

但我们将采取这样的事情。

这是枯草芽孢杆菌。

你看到的那些白点是孢子。

这恰好是一种
可以形成令人难以置信的抗性孢子的细菌

,当我说令人难以置信的抗性时,
它们已经证明了自己。

枯草芽孢杆菌孢子已经
在所谓的 LDEF(

长期暴露设施)
上飞行了近六年

,其中一些在太空中幸存下来。

难以置信,
比我们任何人都做得更好。

那么,为什么不

把制造木头、制造羊毛
或蜘蛛丝之类的能力,

放入枯草芽孢杆菌孢子中,然后将它们带离

地球呢?

那么,
当你离开地球时,你会做什么呢?

这是巴兹奥尔德林在着陆时回望老鹰的标志性照片

,哦,那是大约
50 年前,在月球表面。

现在如果你
要去月球三天

并且你是第一个踏上的人,

是的,你可以住在一个锡罐里,

但你不想这样
做,比如说,一年 和一半。

所以我实际上做了一个计算
,在加利福尼亚。

我查看了
恶魔岛一个牢房的平均大小

,我有消息告诉你

,登月舱中鹰号的体积

大约是恶魔岛一个牢房的大小,

如果它只有五英尺高的话。

如此令人难以置信的狭窄生活区。

你不能要求一个人
在那里呆很长时间。

那么为什么不利用这些生物材料
制造一些东西呢?


是我

的一位建筑师同事 Chris
Maurer 完成了我们一直在提议的

事情

整个讲座都是干三明治。

所以我们提出,
火星栖息地问题的解决方案

可以简单地在于一种真菌。

所以我现在可能
要让每个

人都不再吃蘑菇了。

所以让我们先谈谈真菌。

所以你可能
对这种真菌的子实体很熟悉。

就是那个蘑菇。

但实际上我们感兴趣
的是表面之下的东西

,菌丝体,

这些根毛状结构

实际上是蘑菇的主要部分

嗯,事实证明你可以拿这些——

我拍了一张显微照片

——你可以把它们放在模具里

,给它们一点食物

——不需要太多,
你可以在锯末上种植这些东西—— -

所以这里的这块木屑是在锯末上生长的,

然后菌丝体
将填充那个结构

来制造一些东西。

我们实际上已经尝试
在火星模拟器上种植菌丝体。

所以没有人真的
到过火星表面,

但这是一个模拟的火星表面

,你可以看到那些
头发状的菌丝体。

这真是了不起的东西。

你能把这些东西做成多强?

好吧,你知道,我可以给你
数字和测试等等,

但我认为这可能
是描述它的最佳方式。

我的一个学生
证明你可以做到这一点。

那么,要做到这一点,您必须弄清楚
如何将其置于上下文中。

这实际上会如何发生?

我的意思是,这是个好主意,Lynn,

但是你要怎么
从这里到那里呢?

所以我们说的是你
在实验室里培养菌丝体

,然后你填满一个小结构,
也许是一个像房子一样的结构,很小,

也许是一个双袋
塑料的东西,像一个 充气的——

当我看到这个时,我有点想 LLBean。

然后你把它放进火箭飞船
,然后把它送到火星。

火箭降落,

你放开袋子

,加一点水

,瞧,你已经有了你的栖息地。

你知道,那该有多酷?

其美妙之处在于您
不必采用预先构建的东西。

因此,我们的估计是,如果我们真的在现场种植大型钢结构,我们可以
节省 NASA 目前提出的 90% 的质量

所以让我给你另一个大主意。

数字信息呢?

真正有趣的是
你和你的父母

有身体上的联系,他们也和他们的父母有身体上的
联系,等等,

一直回到生命的起源。

你从未打破这个连续体。

但事实是,我们今天可以做到这一点。

所以
我们的实验室每天都有

学生——波士顿的学生甚至这样做——

他们组成了 DNA 序列

,他们点击“发送”按钮

,然后将它们发送
到当地的 DNA 合成公司。

现在,一旦您断开了

将信息发送到城镇的物理链接,

无论您是将其发送
到查尔斯河

还是将
信息发送到火星都无关紧要。

你破坏了那个物理链接。

那么,一旦你在火星上,

或过河或任何地方,

你就可以获取数字信息,

合成物理 DNA,

也许将其放入另一个有机体中

,瞧,你在那里获得了
新的能力。

再一次,你打破了
那个物理链接。 那是巨大的。

化学呢?

生物学在地球上为我们做化学,

而且已经有
几千年了。

我敢打赌,今天这个房间里的每个人
都吃过一些

由生物学和化学制成的东西。

让我给你一个很大的提示。

另一个想法呢?

用 DNA 本身
来制造电线怎么样?

因为再一次,我们正在尝试
使所有东西都小型化。

DNA真的很便宜。

草莓
含有大量的 DNA。

你知道,你可以随身携带
一个草莓,分离 DNA,

我的一个学生
已经想出了一种方法

来获取 DNA 并稍微调整一下,

这样你就可以将
银原子整合到非常特定的位置,

从而制造出电子 金属丝。

多么酷啊?

因此,当我们讨论金属时,

我们将需要将金属
用于集成电路之类的东西。

可能我们会希望它
用于某些结构,等等。

像集成电路这样的东西
最终会变坏。

我们可以谈论很多,
但我要说的是

,它们确实会变质

,那么你从
哪里得到这些金属?

是的,你可以尝试
用重型设备开采它们,

但你会遇到质量问题。

而且我总是告诉人们,
为新手机找到金属的最佳方法

是在废手机中。

那么,如果您将生物学

作为提取这些金属的技术呢?

你是怎么做到的?

好吧,
看看维生素瓶的背面

,您就会

了解我们身体中实际使用的各种金属。

所以我们有很多蛋白质
以及其他

可以
特异性结合金属的生物体。

那么,如果我们现在将这些蛋白质

附着在真菌菌丝体上

并制作一个过滤器,这样我们就可以开始

以一种非常特殊的方式将这些金属提取出来,
而无需大型采矿设备,

而且,更好的是,我们实际上
有一个 概念证明

,然后
我们用蛋白质提取了那些金属,


使用等离子打印机重新打印了集成电路。

再说一次,有多酷?

电力:
美国宇航局的一个中心的负责人

问我,你是否可以将化学
能转化为电能。

好吧,好消息
是它不仅仅是电鳗。

这个房间
里还活着并且还在工作

的每个人都在这样做。

你今天吃的部分食物

已经去操作
你体内的神经细胞。

但即使是其他生物,无
感知的生物,

也在产生电能,

甚至是细菌。

有些细菌非常
擅长制造小电线。

因此,如果我们能够再次

获得将化学能
转化为电能的能力

,那该有多酷?

所以这里有一些
我们谈到的重要想法。

让我再试一试:生活2.0。

例如,
我们体内的所有糖都是右撇子。

为什么我们不应该
用左旋糖制造有机体?

为什么不制造一个有机体
来做今天没有有机体能做的事情呢?

因此,有机体通常已经进化
为生活在非常特定的环境中。

这只小狮子
真的在树上

,我稍后给他拍了张照片,

当他倒在地上时,他开心多了。

因此,生物体是
为特定环境而设计的。

但是,如果您可以
回到合成生物学的想法

并对其进行调整呢?

所以这里是我们
在黄石国家公园最喜欢的地方之一。

这是章鱼泉。

如果你稍微倾斜你的头,

它看起来就像一个身体
和触须伸出来。

它高于
水的沸点。

你在边缘看到的那些生物体
和颜色

实际上与那里的温度
相匹配,

非常非常高温的嗜热菌。

那么,为什么不采用
能够在极端条件下生存的生物体,

无论是
高温或低温

,低 pH 值或高 pH 值

,高盐或高辐射水平,

并将其中的一些

能力放入其他生物体中。

这是
我的学生们称之为的一个项目

,我喜欢这个,“地狱牢房”。

所以我们已经做到了。

我们已经对有机体进行了一些
调整,并将它们推到了边缘。


对于让我们离开地球

以及了解
宇宙中的生命是什么样的很重要。

所以让我给
你一些最后的想法。

首先是这样一个整体想法
,即我们对

地球外的人类定居点的所有这些需求

在某些方面
与我们在地球上的需求完全一样

,我们需要食物
,我们需要住所等等,

但我们有非常非常
不同的

这个upmass问题的约束和可靠性
和灵活性等。

但是因为我们有这些
你在这里没有的限制,你可能不得不

考虑本土的石化工业,

或者其他什么,


现在有必须释放创造力的限制。

一旦
你因为有了新的限制而释放了这种创造力,

你就在推动改变游戏规则的
技术进步

,这是你无法以
任何其他方式获得的。

最后,我们必须想一想,修补生活

是个好
主意吗?

嗯,一个简单的答案是

,房间里可能没有人
在家里养一只小狼,

但你可能有一只小狗或一条狗; 今年夏天

你可能没有吃过大蜀黍
,但你吃了玉米。

我们对
生物体进行基因改造已经有

10,000 年或更长时间了。

这是一种不同的方法,
但突然间说

人类不应该接触

有机体有点愚蠢,

因为我们现在有

能力做
对地球

和其他生命更有益的事情。

那么问题来了,我们应该这样做吗?

当然,我
觉得我们不仅应该,

至少是为了离开地球,

而且实际上,如果我们不
使用合成生物学,

我们将永远无法解决这个大质量问题。

因此,一旦您将生活视为一种技术,
您就会找到解决方案。

所以,有了这个,我想以
我一贯的方式完成,

并说“ad astra”
,意思是“对星星”。

非常感谢你,波士顿。

(掌声)