Electrical experiments with plants that count and communicate Greg Gage

I’m a neuroscientist,

and I’m the co-founder of Backyard Brains,

and our mission is to train
the next generation of neuroscientists

by taking graduate-level
neuroscience research equipment

and making it available for kids
in middle schools and high schools.

And so when we go into the classroom,

one way to get them thinking
about the brain, which is very complex,

is to ask them a very simple
question about neuroscience,

and that is, “What has a brain?”

When we ask that,

students will instantly tell you
that their cat or dog has a brain,

and most will say that a mouse
or even a small insect has a brain,

but almost nobody says
that a plant or a tree

or a shrub has a brain.

And so when you push –

because this could actually
help describe a little bit

how the brain actually functions –

so you push and say,

“Well, what is it that makes
living things have brains versus not?”

And often they’ll come back
with the classification

that things that move tend to have brains.

And that’s absolutely correct.

Our nervous system evolved
because it is electrical.

It’s fast, so we can quickly respond
to stimuli in the world

and move if we need to.

But you can go back
and push back on a student,

and say, “Well, you know,
you say that plants don’t have brains,

but plants do move.”

Anyone who has grown a plant

has noticed that the plant will move

and face the sun.

But they’ll say,
“But that’s a slow movement.

You know, that doesn’t count.
That could be a chemical process.”

But what about fast-moving plants?

Now, in 1760, Arthur Dobbs,
the Royal Governor of North Carolina,

made a pretty fascinating discovery.

In the swamps behind his house,

he found a plant that would spring shut

every time a bug would fall in between it.

He called this plant the flytrap,

and within a decade,
it made its way over to Europe,

where eventually the great Charles Darwin
got to study this plant,

and this plant absolutely blew him away.

He called it the most wonderful
plant in the world.

This is a plant
that was an evolutionary wonder.

This is a plant that moves quickly,

which is rare,

and it’s carnivorous, which is also rare.

And this is in the same plant.

But I’m here today to tell you

that’s not even the coolest thing
about this plant.

The coolest thing
is that the plant can count.

So in order to show that,

we have to get some vocabulary
out of the way.

So I’m going to do what we do
in the classroom with students.

We’re going to do
an experiment on electrophysiology,

which is the recording
of the body’s electrical signal,

either coming from neurons
or from muscles.

And I’m putting some electrodes
here on my wrists.

As I hook them up,

we’re going to be able to see a signal

on the screen here.

And this signal may be familiar to you.

It’s called the EKG,
or the electrocardiogram.

And this is coming
from neurons in my heart

that are firing
what’s called action potentials,

potential meaning voltage and action
meaning it moves quickly up and down,

which causes my heart to fire,

which then causes
the signal that you see here.

And so I want you to remember the shape
of what we’ll be looking at right here,

because this is going to be important.

This is a way that the brain
encodes information

in the form of an action potential.

So now let’s turn to some plants.

So I’m going to first
introduce you to the mimosa,

not the drink, but the Mimosa pudica,

and this is a plant that’s found
in Central America and South America,

and it has behaviors.

And the first behavior
I’m going to show you

is if I touch the leaves here,

you get to see that the leaves
tend to curl up.

And then the second behavior is,

if I tap the leaf,

the entire branch seems to fall down.

So why does it do that?

It’s not really known to science.

One of the reasons why
could be that it scares away insects

or it looks less appealing to herbivores.

But how does it do that?
Now, that’s interesting.

We can do an experiment to find out.

So what we’re going to do now,

just like I recorded
the electrical potential from my body,

we’re going to record the electrical
potential from this plant, this mimosa.

And so what we’re going to do
is I’ve got a wire wrapped around the stem,

and I’ve got the ground electrode where?

In the ground. It’s an electrical
engineering joke. Alright.

(Laughter)

Alright. So I’m going to go ahead
and tap the leaf here,

and I want you to look
at the electrical recording

that we’re going to see inside the plant.

Whoa. It is so big,
I’ve got to scale it down.

Alright. So what is that?

That is an action potential
that is happening inside the plant.

Why was it happening?

Because it wanted to move. Right?

And so when I hit the touch receptors,

it sent a voltage all the way down
to the end of the stem,

which caused it to move.

And now, in our arms,
we would move our muscles,

but the plant doesn’t have muscles.

What it has is water inside the cells

and when the voltage hits it,
it opens up, releases the water,

changes the shape of the cells,
and the leaf falls.

OK. So here we see an action potential
encoding information to move. Alright?

But can it do more?

So let’s go to find out.

We’re going to go to our good friend,
the Venus flytrap here,

and we’re going to take a look
at what happens inside the leaf

when a fly lands on here.

So I’m going to pretend
to be a fly right now.

And now here’s my Venus flytrap,

and inside the leaf,
you’re going to notice

that there are three little hairs here,
and those are trigger hairs.

And so when a fly lands –

I’m going to touch
one of the hairs right now.

Ready? One, two, three.

What do we get? We get
a beautiful action potential.

However, the flytrap doesn’t close.

And to understand why that is,

we need to know a little bit more
about the behavior of the flytrap.

Number one is that it takes
a long time to open the traps back up –

you know, about 24 to 48 hours
if there’s no fly inside of it.

And so it takes a lot of energy.

And two, it doesn’t need to eat
that many flies throughout the year.

Only a handful. It gets
most of its energy from the sun.

It’s just trying to replace
some nutrients in the ground with flies.

And the third thing is,

it only opens then closes the traps
a handful of times

until that trap dies.

So therefore, it wants
to make really darn sure

that there’s a meal inside of it
before the flytrap snaps shut.

So how does it do that?

It counts the number of seconds

between successive
touching of those hairs.

And so the idea is
that there’s a high probability,

if there’s a fly inside of there,
they’re going to be quick together,

and so when it gets the first
action potential,

it starts counting, one, two,

and if it gets to 20
and it doesn’t fire again,

then it’s not going to close,

but if it does it within there,
then the flytrap will close.

So we’re going to go back now.

I’m going to touch
the Venus flytrap again.

I’ve been talking
for more than 20 seconds.

So we can see what happens
when I touch the hair a second time.

So what do we get?
We get a second action potential,

but again, the leaf doesn’t close.

So now if I go back in there

and if I’m a fly moving around,

I’m going to be touching
the leaf a few times.

I’m going to go and brush it a few times.

And immediately,

the flytrap closes.

So here we are seeing the flytrap
actually doing a computation.

It’s determining
if there’s a fly inside the trap,

and then it closes.

So let’s go back to our original question.

Do plants have brains?

Well, the answer is no.

There’s no brains in here.

There’s no axons, no neurons.

It doesn’t get depressed.

It doesn’t want to know
what the Tigers' score is.

It doesn’t have
self-actualization problems.

But what it does have
is something that’s very similar to us,

which is the ability
to communicate using electricity.

It just uses slightly
different ions than we do,

but it’s actually doing the same thing.

So just to show you

the ubiquitous nature
of these action potentials,

we saw it in the Venus flytrap,

we’ve seen an action
potential in the mimosa.

We’ve even seen
an action potential in a human.

Now, this is the euro of the brain.

It’s the way that all
information is passed.

And so what we can do
is we can use those action potentials

to pass information

between species of plants.

And so this is our interspecies
plant-to-plant communicator,

and what we’ve done
is we’ve created a brand new experiment

where we’re going to record
the action potential from a Venus flytrap,

and we’re going to send it
into the sensitive mimosa.

So I want you to recall what happens

when we touch the leaves of the mimosa.

It has touch receptors
that are sending that information

back down in the form
of an action potential.

And so what would happen

if we took the action potential
from the Venus flytrap

and sent it into
all the stems of the mimosa?

We should be able to create
the behavior of the mimosas

without actually touching it ourselves.

And so if you’ll allow me,

I’m going to go ahead
and trigger this mimosa right now

by touching on the hairs
of the Venus flytrap.

So we’re going to send information
about touch from one plant to another.

So there you see it.

So –

(Applause)

So I hope you learned a little bit,
something about plants today,

and not only that.

You learned that plants could be used
to help teach neuroscience

and bring along the neurorevolution.

Thank you.

(Applause)

我是一名神经科学家,

也是 Backyard Brains 的联合创始人

,我们的使命是

通过采用研究生级别的
神经科学研究设备

并将其提供给
初中和高中的孩子们来培养下一代神经科学家。

所以当我们走进教室时,

让他们
思考大脑的一种方法,这是非常复杂的,

就是问他们一个关于神经科学的非常简单的
问题

,那就是“什么有大脑?”

当我们问这个问题时,

学生们会立即告诉
你他们的猫或狗有大脑

,大多数人会说老鼠
甚至小昆虫有大脑,

但几乎没有人
说植物、树木

或灌木有大脑。 脑。

所以当你推动时——

因为这实际上
有助于描述

大脑的实际运作方式——

所以你推动并说,

“嗯,是什么让
生物有大脑而不是没有大脑?”

通常他们会

归结为移动的东西往往有大脑的分类。

这是绝对正确的。

我们的神经系统
之所以进化,是因为它是电的。

它很快,因此我们可以快速响应
世界上的刺激

并在需要时移动。

但是你可以
回过头来反驳一个学生,

然后说,“嗯,你知道,
你说植物没有大脑,

但植物会移动。”

任何种植过植物的人

都注意到植物会移动

并面向太阳。

但他们会说,
“但这是一个缓慢的动作。

你知道,这不算数。
这可能是一个化学过程。”

但是快速移动的植物呢?

现在,在 1760 年,北卡罗来纳州皇家州长亚瑟·多布斯(Arthur Dobbs)

有了一个非常迷人的发现。

在他房子后面的沼泽地里,

他发现了一种植物,

每当有虫子落在它之间时,它就会自动关闭。

他称这种植物为捕蝇草,

十年之内,
它传到了欧洲

,最终伟大的查尔斯·达尔文
在那里研究了这种植物

,这种植物绝对让他大吃一惊。

他称它为世界上最美妙的
植物。

这是一种具有进化奇迹的植物。

这是一种行动迅速的植物,

很少见,

而且是肉食性的,这也很少见。

这是在同一个工厂。

但我今天在这里告诉你

,这甚至不是
这种植物最酷的地方。

最酷的
是植物可以数数。

因此,为了表明这一点,

我们必须摆脱一些词汇

所以我要和学生一起做我们
在课堂上做的事情。

我们要做
一个关于电生理学的实验,


记录身体的电信号,

无论是来自神经元
还是来自肌肉。

我在手腕上放了一些
电极。

当我连接它们时,

我们将能够

在此处的屏幕上看到一个信号。

这个信号你可能很熟悉。

它被称为心电图
或心电图。


来自我心脏中的神经元,

它们正在发射
所谓的动作电位,

潜在的意思是电压,动作
意味着它快速上下移动,

这导致我的心脏着火

,然后
产生你在这里看到的信号。

所以我希望你记住
我们将在这里看到的形状,

因为这很重要。

这是大脑

以动作电位的形式编码信息的一种方式。

所以现在让我们转向一些植物。

所以我要先
给你们介绍含羞草,

不是饮料,而是含羞草

,这是一种
在中美洲和南美洲发现的植物

,它有行为。

我要向你展示的第一个行为

是,如果我触摸这里的树叶,

你会看到树叶
倾向于卷曲。

然后第二个行为是,

如果我敲击叶子

,整个树枝似乎都会掉下来。

那么它为什么这样做呢?

科学界并不真正了解它。

原因之一
可能是它吓跑了昆虫,

或者它看起来对食草动物不那么有吸引力。

但它是如何做到的呢?
现在,这很有趣。

我们可以做一个实验来找出答案。

所以我们现在要做的,

就像我记录
我身体的电势一样,

我们要记录
这种植物的电势,这种含羞草。

所以我们要做的
是我有一根电线缠绕在茎上

,我在哪里有接地电极?

在地里。 这是一个电气
工程笑话。 好吧。

(笑声)

好吧。 所以我要
继续点击这里的叶子

,我想让你看看

我们将在植物内部看到的电子记录。

哇。 它太大了,
我必须缩小它。

好吧。 那是什么?

这是植物内部发生的动作电位。

为什么会这样?

因为它想动。 对?

因此,当我碰到触摸感受器时,

它会一直
向茎的末端发出电压,

从而导致它移动。

现在,在我们的手臂中,
我们可以移动我们的肌肉,

但植物没有肌肉。

它所拥有的是细胞内的水

,当电压击中它时,
它会打开,释放水,

改变细胞的形状
,叶子就会掉落。

行。 所以在这里我们看到一个动作电位
编码信息移动。 好吧?

但它还能做得更多吗?

所以让我们去了解一下。

我们要去找我们的好朋友,
这里的捕蝇草

,我们要
看看当苍蝇降落在这里时,叶子内部会发生什么

所以我现在要
假装是一只苍蝇。

现在这是我的捕蝇草

,在叶子里面,
你会

注意到这里有三根小毛
,它们是触发毛。

所以当一只苍蝇降落时——

我现在要触摸
其中一根头发。

准备好? 一二三。

我们得到什么? 我们得到
了一个漂亮的动作电位。

然而,捕蝇草并没有关闭。

要理解为什么会这样,

我们需要更多地
了解捕蝇器的行为。

第一
,打开陷阱需要很长时间——

你知道,如果里面没有苍蝇,大约需要 24 到 48 小时

所以它需要大量的能量。

第二,它不需要
全年吃那么多苍蝇。

只有少数。 它的
大部分能量来自太阳。

它只是想
用苍蝇代替地下的一些营养物质。

第三件事是,

它只会打开然后关闭
陷阱几次,

直到该陷阱死亡。

因此,它
想确保

在捕蝇草关闭之前,里面有饭菜。

那么它是如何做到的呢?

它计算

连续
接触这些头发之间的秒数。

所以这个想法是
很有可能,

如果里面有一只苍蝇,
它们会很快在一起

,所以当它获得第一个
动作电位时,

它开始计数,一,二

,如果它得到 到 20
并且它不再开火,

那么它就不会关闭,

但如果它在那里这样做,
那么捕蝇器就会关闭。

所以我们现在要回去了。

我要
再次触摸捕蝇草。

我已经讲
了超过 20 秒。

所以我们可以看到
当我第二次触摸头发时会发生什么。

那么我们得到了什么?
我们得到了第二个动作电位,

但同样,叶子没有关闭。

所以现在如果我回到那里

,如果我是一只四处走动的苍蝇,

我会
触摸叶子几次。

我要去刷几次。

捕蝇草立即关闭。

所以在这里我们看到捕蝇草
实际上在进行计算。

它确定
陷阱内是否有苍蝇,

然后关闭。

那么让我们回到我们最初的问题。

植物有大脑吗?

嗯,答案是否定的。

这里没有大脑。

没有轴突,没有神经元。

它不会沮丧。

它不想
知道老虎队的得分是多少。

它不存在
自我实现的问题。

但它确实
有一些与我们非常相似的东西,

那就是
使用电力进行交流的能力。

它只是使用
与我们略有不同的离子,

但实际上它在做同样的事情。

所以只是为了向你展示

这些动作电位无处不在的本质,

我们在捕蝇草中看到了它,

我们
在含羞草中看到了动作电位。

我们甚至已经
在人类身上看到了动作电位。

现在,这是大脑的欧元。

这是传递所有信息的方式

所以我们可以做的
是我们可以使用这些动作电位

在植物物种之间传递信息。

所以这是我们种
间植物间的交流

器 我们所做的
是我们创建了一个全新的

实验 我们将记录
捕蝇草的动作电位

我们将发送 它
进入敏感的含羞草。

所以我想让你回忆一下

当我们触摸含羞草的叶子时会发生什么。

它有触觉感受器
,可以将信息

以动作电位的形式向下发送。

那么

如果我们从捕蝇草中获取动作电位

并将其发送到
含羞草的所有茎中会发生什么?

我们应该能够创建
含羞草的行为,而

无需自己实际接触它。

所以,如果你允许我的话,


现在就

通过触摸捕蝇草的毛发
来触发这个含羞草。

因此,我们将把
有关触摸的信息从一种植物发送到另一种植物。

所以你看到了。

所以–

(掌声)

所以我希望你们今天学到了
一些关于植物的知识,

而且不仅如此。

您了解到植物可
用于帮助教授神经科学

并带来神经革命。

谢谢你。

(掌声)