How Mendels pea plants helped us understand genetics Hortensia Jimnez Daz

Translator: Andrea McDonough
Reviewer: Bedirhan Cinar

These days scientists know

how you inherit characteristics
from your parents.

They’re able to calculate probabilities
of having a specific trait

or getting a genetic disease

according to the information
from the parents and the family history.

But how is this possible?

To understand how traits pass
from one living being to its descendants,

we need to go back in time
to the 19th century

and a man named Gregor Mendel.

Mendel was an Austrian monk and biologist

who loved to work with plants.

By breeding the pea plants
he was growing in the monastery’s garden,

he discovered the principles
that rule heredity.

In one of most classic examples,

Mendel combined
a purebred yellow-seeded plant

with a purebred green-seeded plant,

and he got only yellow seeds.

He called the yellow-colored trait
the dominant one,

because it was expressed
in all the new seeds.

Then he let the new yellow-seeded
hybrid plants self-fertilize.

And in this second generation,
he got both yellow and green seeds,

which meant the green trait
had been hidden by the dominant yellow.

He called this hidden trait
the recessive trait.

From those results, Mendel inferred

that each trait depends
on a pair of factors,

one of them coming from the mother

and the other from the father.

Now we know that these factors
are called alleles

and represent the different
variations of a gene.

Depending on which type of allele
Mendel found in each seed,

we can have what we call a homozygous pea,
where both alleles are identical,

and what we call a heterozygous pea,

when the two alleles are different.

This combination of alleles
is known as genotype

and its result, being yellow or green,

is called phenotype.

To clearly visualize how alleles
are distributed amongst descendants,

we can a diagram
called the Punnett square.

You place the different
alleles on both axes

and then figure out
the possible combinations.

Let’s look at Mendel’s peas, for example.

Let’s write the dominant yellow allele
as an uppercase “Y”

and the recessive green allele
as a lowercase “y.”

The uppercase Y always
overpowers his lowercase friend,

so the only time you get green babies

is if you have lowercase Y’s.

In Mendel’s first generation,
the yellow homozygous pea mom

will give each pea kid
a yellow-dominant allele,

and the green homozygous pea dad
will give a green-recessive allele.

So all the pea kids
will be yellow heterozygous.

Then, in the second generation,

where the two heterozygous kids marry,

their babies could have
any of the three possible genotypes,

showing the two possible phenotypes

in a three-to-one proportion.

But even peas have
a lot of characteristics.

For example, besides
being yellow or green,

peas may be round or wrinkled.

So we could have all
these possible combinations:

round yellow peas, round green peas,

wrinkled yellow peas, wrinkled green peas.

To calculate the proportions
for each genotype and phenotype,

we can use a Punnett square too.

Of course, this will make it
a little more complex.

And lots of things are more
complicated than peas,

like, say, people.

These days, scientists know a lot more
about genetics and heredity.

And there are many other ways in which
some characteristics are inherited.

But, it all started
with Mendel and his peas.

译者:Andrea McDonough
审稿人:Bedirhan Cinar 如今,

科学家们

知道你是如何
从父母那里继承特征的。

他们能够根据父母和家族史的信息计算
出具有特定特征

或患上遗传疾病的概率

但这怎么可能?

要了解特征如何
从一个生物传递给它的后代,

我们需要及时
回到 19 世纪

,一个名叫格雷戈尔·孟德尔的人。

孟德尔是一位奥地利僧侣和生物学家

,他喜欢研究植物。

通过培育
他在修道院花园里种植的豌豆植物,

他发现了
支配遗传的原则。

在一个最经典的例子中,

孟德尔
将纯种黄种子植物

与纯种绿种子植物结合在一起

,他只得到了黄色种子。

他称黄色性状
为主导性状,

因为它
在所有新种子中都有表达。

然后他让新的黄色种子
杂交植物自我受精。

而在这第二代中,
他同时得到了黄色和绿色的种子,

这意味着绿色的特性
已经被占主导地位的黄色所掩盖。

他把这种隐藏的特征称为
隐性特征。

根据这些结果,孟德尔

推断每个特征都
取决于一对因素,

其中一个来自母亲

,另一个来自父亲。

现在我们知道这些因素
被称为等位基因

,代表基因的不同
变异。

根据
在每个种子中发现的等位基因 Mendel 的类型,

我们可以得到我们所谓的纯合豌豆,
其中两个等位基因相同,

以及我们所谓的杂合豌豆,

当两个等位基因不同时。

这种等位基因的组合
称为基因型

,其结果为黄色或绿色

,称为表型。

为了清楚地显示等位基因
在后代中的分布情况,

我们可以使用一个
名为 Punnett 方的图表。

您将不同的
等位基因放在两个轴上

,然后
找出可能的组合。

例如,让我们看看孟德尔的豌豆。

让我们将显性黄色等位基因写
为大写“Y”

,将隐性绿色等位基因写
为小写“y”。

大写的 Y 总是
压倒他的小写朋友,

所以你得到绿色婴儿的唯一时间

是如果你有小写的 Y。

在孟德尔的第一代中
,黄色纯合豌豆妈妈

会给每个豌豆孩子
一个黄色显性等位基因,

而绿色纯合豌豆爸爸
会给每个豌豆孩子一个绿色隐性等位基因。

所以所有的豌豆
孩子都是黄色杂合子。

然后,

在两个杂合子孩子结婚的第二代中,

他们的孩子可能
具有三种可能的基因型中的任何一种,以三比一的比例

显示两种可能的表型

但即使是豌豆也
有很多特点。

例如,
除了黄色或绿色外,

豌豆可能是圆形的或起皱的。

所以我们可以有所有
这些可能的组合:

圆黄豌豆、圆绿豌豆、

皱黄豌豆、皱绿豌豆。


计算每个基因型和表型的比例,

我们也可以使用 Punnett 方。

当然,这会使
它变得更复杂一些。

很多事情
都比豌豆复杂

,比如人。

这些天来,科学家们
对遗传学和遗传有了更多的了解。

还有许多其他方式
可以继承某些特征。

但是,这一切都
始于孟德尔和他的豌豆。