How plants tell time Dasha Savage

In the 18th century,

Swedish botanist Carolus Linnaeus
designed the flower clock,

a timepiece made of flowering plants

that bloom and close
at specific times of day.

Linnaeus’s plan wasn’t perfect,
but the idea behind it was correct.

Flowers can indeed sense time,
after a fashion.

Mornings glories unfurl their petals
like clockwork in the early morning.

A closing white water lily
signals that it’s late afternoon,

and moon flowers, as the name suggests,
only bloom under the night sky.

But what gives plants
this innate sense of time?

It’s not just plants, in fact.

Many organisms on Earth
have a seemingly inherent awareness

of where they are in the day’s cycle.

That’s because of circadian rhythms,

the internal timekeepers
that tick away inside many living things.

These biological clocks allow organisms
to keep track of time

and pick up on environmental cues
that help them adapt.

That’s important, because the planet’s
rotations and revolutions

put us in a state of constant flux,

although it plays out in a repetitive,
predictable way.

Circadian rhythms incorporate various cues

to regulate when an organism
should wake and sleep,

and perform certain activities.

For plants, light and temperature
are the cues which trigger reactions

that play out at a molecular scale.

The cells in stems, leaves, and flowers
contain phytochromes,

tiny molecules that detect light.

When that happens, phytochromes
initiate a chain of chemical reactions,

passing the message down
into the cellular nuclei.

There, transcription factors trigger
the manufacture of proteins

required to carry out
light-dependent processes,

like photosynthesis.

These phytochromes not only sense
the amount of light the plant receives,

but can also detect tiny differences

in the distribution of wavelengths
the plant takes in.

With this fine-tuned sensing,

phytochromes allow the plant
to discern both time,

the difference between
the middle of the day and the evening,

and place, whether
it is in direct sunlight or shade,

enabling the plant to match
its chemical reactions to its environment.

This makes for early risers.

A few hours before sunrise,
a typical plant is already active,

creating mRNA templates
for its photosynthesizing machinery.

As the phytochromes
detect increasing sunlight,

the plant readies
its light-capturing molecules

so it can photosynthesize
and grow throughout the morning.

After harvesting their morning light,

plants use the rest of the day
to build long chains of energy

in the form of glucose polymers,
like starch.

The sun sets, and the day’s work is done,

though a plant is anything
but inactive at night.

In the absence of sunlight,

they metabolize and grow,

breaking down the starch from
the previous day’s energy harvest.

Many plants have seasonal rhythms as well.

As spring melts the winter frost,

phytochromes sense the longer days
and increasing light,

and a currently unknown mechanism
detects the temperature change.

These systems pass the news
throughout the plant

and make it produce blooming flowers

in preparation for the pollinators
brought out by warmer weather.

Circadian rhythms act as a link
between a plant and its environment.

These oscillations come
from the plants themselves.

Each one has a default rhythm.

Even so, these clocks
can adapt their oscillations

to environmental changes and cues.

On a planet that’s in constant flux,

it’s the circadian rhythms that enable
a plant to stay true to its schedule

and to keep its own time.

在 18 世纪,

瑞典植物学家 Carolus Linnaeus
设计了花钟,这

是一种由开花植物制成的钟表


在一天中的特定时间开花和关闭。

林奈的计划并不完美,
但背后的想法是正确的。

花确实可以感知时间,
经过一种时尚。

牵牛花
像清晨的发条一样展开花瓣。

一朵闭合的白色睡莲
表明它是下午晚些时候,

而月亮花,顾名思义,
只在夜空下绽放。

但是是什么赋予植物
这种与生俱来的时间感呢?

事实上,不仅仅是植物。

地球上的许多生物体
似乎天生

就知道它们在一天的周期中所处的位置。

这是因为昼夜节律,

即在许多生物体内滴答作响的内部计时器。

这些生物钟使生物体
能够跟踪时间


获取帮助它们适应的环境线索。

这很重要,因为行星的
自转和公转

使我们处于不断变化的状态,

尽管它以重复、
可预测的方式进行。

昼夜节律包含各种线索

来调节有机体
何时应该醒来和睡觉,

并执行某些活动。

对于植物来说,光和温度
是触发

分子尺度反应的线索。

茎、叶和花中的细胞
含有光敏色素,

一种检测光的微小分子。

当这种情况发生时,光敏色素会
引发一系列化学反应,

将信息传递
到细胞核中。

在那里,转录因子触发

了进行光合作用等
依赖光的过程所需的蛋白质的制造

这些光敏色素不仅可以感知
植物接收的光量,

还可以检测植物吸收

的波长分布的微小差异

通过这种微调的感应,

光敏色素使植物
能够辨别时间,中间

之间的差异
白天和晚上

,地点,
无论是在阳光直射还是阴凉处,

都能使植物
的化学反应与其环境相匹配。

这使得早起的人。

日出前几个小时
,典型的植物已经开始活跃,

为其光合作用机制创建 mRNA 模板。

当光敏色素
检测到越来越多的阳光时

,植物就会准备好
它的光捕获分子,

这样它就可以
在整个早晨进行光合作用和生长。

收获晨光后,

植物利用一天中剩余的时间

葡萄糖聚合物(
如淀粉)的形式构建长链能量。

太阳落山了,一天的工作已经完成,

尽管植物
在晚上一点也不活跃。

在没有阳光的情况下,

它们会代谢和生长,

分解
前一天能量收获的淀粉。

许多植物也有季节性的节奏。

随着春天融化了冬天的霜冻,

光敏色素感知到更长的白昼
和更多的光照,

而目前未知的机制
可以检测到温度的变化。

这些系统将消息传递到
整个植物

,使其开花

,为温暖的天气带来的传粉媒介做好准备

昼夜节律充当
植物与其环境之间的联系。

这些振荡
来自植物本身。

每一个都有一个默认的节奏。

即便如此,这些时钟仍
可以

根据环境变化和提示调整其振荡。

在一个不断变化的星球上,

正是昼夜节律
使植物能够忠实于其时间表

并保持自己的时间。