How supercharged plants could slow climate change Joanne Chory

I recently had an epiphany.

I realized that I could
actually play a role

in solving one of the biggest problems
that faces mankind today,

and that is the problem of climate change.

It also dawned on me that
I had been working for 30 years or more

just to get to this point in my life

where I could actually make
this contribution to a bigger problem.

And every experiment
that I have done in my lab

over the last 30 years

and people who work for me
did in my lab over the last 30 years

has been directed toward doing
the really big experiment,

this one last big experiment.

So who am I?

I’m a plant geneticist.

I live in a world where there’s
too much CO2 in the atmosphere

because of human activity.

But I’ve come to appreciate the plants

as amazing machines that they are,

whose job has been, really,
to just suck up CO2.

And they do it so well,

because they’ve been doing it
for over 500 million years.

And they’re really good at it.

And so …

I also have some urgency
I want to tell you about.

As a mother, I want to give
my two children a better world

than I inherited from my parents,

it would be nicer to keep it going
in the right direction,

not the bad direction.

But I also …

I’ve had Parkinson’s
for the last 15 years,

and this gives me a sense of urgency
that I want to do this now,

while I feel good enough
to really be part of this team.

And I have an incredible team.

We all work together,

and this is something we want to do
because we have fun.

And if you’re only going to have
five people trying to save the planet,

you better like each other,

because you’re going to be spending
a lot of time together.

(Laughter)

OK, alright. But enough about me.

Let’s talk about CO2.

CO2 is the star of my talk.

Now, most of you probably think
of CO2 as a pollutant.

Or perhaps you think of CO2
as the villain in the novel, you know?

It’s always the dark side of CO2.

But as a plant biologist,
I see the other side of CO2, actually.

And that CO2 that we see,

we see it differently because
I think we remember, as plant biologists,

something you may have forgotten.

And that is that plants actually
do this process called photosynthesis.

And when they do photosynthesis –

all carbon-based life on our earth

is all because of the CO2 that plants
and other photosynthetic microbes

have dragged in from CO2
that was in the atmosphere.

And almost all of the carbon in your body
came from air, basically.

So you come from air,

and it’s because of photosynthesis,

because what plants do
is they use the energy in sunlight,

take that CO2 and fix it into sugars.

It’s a great thing.

And the other thing
that is really important

for what I’m going to tell you today

is that plants and other
photosynthetic microbes

have a great capacity for doing this –

twentyfold or more than the amount
of CO2 that we put up

because of our human activities.

And so, even though
we’re not doing a great job

at cutting our emissions and things,

plants have the capacity,

as photosynthetic organisms, to help out.

So we’re hoping that’s what they’ll do.

But there’s a catch here.

We have to help the plants
a little ourselves,

because what plants like to do
is put most of the CO2 into sugars.

And when the end
of the growing season comes,

the plant dies and decomposes,

and then all that work they did
to suck out the CO2 from the atmosphere

and make carbon-based biomass

is now basically going right back up
in the atmosphere as CO2.

So how can we get plants to redistribute
the CO2 they bring in

into something that’s
a little more stable?

And so it turns out
that plants make this product,

and it’s called suberin.

This is a natural product
that is in all plant roots.

And suberin is really cool,

because as you can see there, I hope,

everywhere you see a black dot,
that’s a carbon.

There’s hundreds of them in this molecule.

And where you see those few red dots,

those are oxygens.

And oxygen is what microbes like to find

so they can decompose a plant.

So you can see why this is
a perfect carbon storage device.

And actually it can stabilize
the carbon that gets fixed by the plant

into something that’s a little bit
better for the plant.

And so, why now?

Why is now a good time to do
a biological solution to this problem?

It’s because over the last
30 or so years –

and I know that’s a long time,
you’re saying, “Why now?” –

but 30 years ago, we began to understand

the functions of all the genes
that are in an organism in general.

And that included humans as well as plants

and many other complicated eukaryotes.

And so, what did the 1980s begin?

What began then is that we now know

the function of many of the genes
that are in a plant

that tell a plant to grow.

And that has now converged
with the fact that we can do genomics

in a faster and cheaper way
than we ever did before.

And what that tells us is that
all life on earth is really related,

but plants are more related to each other
than other organisms.

And that you can take a trait
that you know from one plant

and put it in another plant,

and you can make a prediction
that it’ll do the same thing.

And so that’s important as well.

Then finally, we have these little
genetic tricks that came along,

like you heard about this morning –

things like CRISPR,
that allows us to do editing

and make genes be a little different
from the normal state in the plant.

OK, so now we have biology on our side.

I’m a biologist, so that’s why
I’m proposing a solution

to the climate change problem

that really involves the best evolved
organism on earth to do it – plants.

So how are we going to do it?

Biology comes to the rescue.

Here we go.

OK.

You have to remember
three simple things from my talk, OK?

We have to get plants to make more suberin
than they normally make,

because we need them to be
a little better than what they are.

We have to get them to make more roots,

because if we make more roots,
we can make more suberin –

now we have more of the cells
that suberin likes to accumulate in.

And then the third thing is,
we want the plants to have deeper roots.

And what that does is –

we’re asking the plant, actually,
“OK, make stable carbon,

more than you used to,

and then bury it for us in the ground.”

So they can do that
if they make roots that go deep

rather than meander around
on the surface of the soil.

Those are the three traits
we want to change:

more suberin, more roots,
and the last one, deep roots.

Then we want to combine
all those traits in one plant,

and we can do that easily
and we will do it,

and we are doing it actually,
in the model plant, Arabidopsis,

which allows us to do these
experiments much faster

than we can do in another big plant.

And when we find that we have plants
where traits all add up

and we can get more of them,
more suberin in those plants,

we’re going to move it all –

we can and we we will,
we’re beginning to do this –

move it to crop plants.

And I’ll tell you why we’re picking
crop plants to do the work for us

when I get to that part of my talk.

OK, so I think this is the science
behind the whole thing.

And so I know we can do the science,
I feel pretty confident about that.

And the reason is because,
just in the last year,

we’ve been able to find single genes
that affect each of those three traits.

And in several of those cases,
two out of the three,

we have more than one way to get there.

So that tells us we might be able
to even combine within a trait

and get even more suberin.

This shows one result,

where we have a plant here on the right

that’s making more than double
the amount of root

than the plant on the left,

and that’s just because of the way
we expressed one gene

that’s normally in the plant

in a slightly different way
than the plant usually does on its own.

Alright, so that’s just one example
I wanted to show you.

And now I want to tell you that, you know,

we still have a lot
of challenges, actually,

when we get to this problem,

because it takes …

We have to get the farmers
to actually buy the seeds,

or at least the seed company to buy seeds

that farmers are going to want to have.

And so when we do the experiments,

we can’t actually take a loss in yield,

because while we are doing
these experiments,

say, beginning about 10 years from now,

the earth’s population will be
even more than it is right now.

And it’s rapidly growing still.

So by the end of the century,
we have 11 billion people,

we have wasted ecosystems that aren’t
really going to be able to handle

all the load they have to take
from agriculture.

And then we also have
this competition for land.

And so we figure, to do this
carbon sequestration experiment

actually requires a fair amount of land.

We can’t take it away from food,

because we have to feed the people
that are also going to be on the earth

until we get past this big crisis.

And the climate change is actually
causing loss of yield all over the earth.

So why would farmers
want to buy seeds

if it’s going to impact yield?

So we’re not going to let it impact yield,

we’re going to always have
checks and balances

that says go or no go on that experiment.

And then the second thing is,
when a plant actually makes more carbon

and buries it in the soil like that,

almost all the soils on earth
are actually depleted of carbon

because of the load from agriculture,

trying to feed eight billion people,

which is what lives
on the earth right now.

And so, that is also a problem as well.

Plants that are making more carbon,
those soils become enriched in carbon.

And carbon-enriched soils
actually hold nitrogen

and they hold sulphur
and they hold phosphate –

all the minerals that are required
for plants to grow and have a good yield.

And they also retain water
in the soil as well.

So the suberin will break up
into little particles

and give the whole soil a new texture.

And as we’ve shown that
we can get more carbon in that soil,

the soil will get darker.

And so we will be able
to measure all that,

and hopefully, this is going to help
us solve the problem.

So, OK.

So we have the challenges of
a lot of land that we need to use,

we have to get farmers to buy it,

and that’s going to be
the hard thing for us, I think,

because we’re not really salesmen,

we’re people who like to Google a person
rather than meet them,

you know what I mean?

(Laughter)

That’s what scientists are mostly like.

But we know now that, you know,
no one can really deny –

the climate is changing,
everyone knows that.

And it’s here and it’s bad
and it’s serious,

and we need to do something about it.

But I feel pretty optimistic
that we can do this.

So I’m here today
as a character witness for plants.

And I want to tell you
that plants are going to do it for us,

all we have to do
is give them a little help,

and they will go and get
a gold medal for humanity.

Thank you very much.

(Applause)

(Cheers)

Thank you.

(Applause)

I finally got it out.

Chris Anderson: Wow.

Joanne, you’re so extraordinary.

Just to be sure we heard this right:

you believe that within the next 10 years

you may be able to offer the world

seed variants for the major crops,
like – what? – wheat, corn, maybe rice,

that can offer farmers just as much yield,

sequester three times, four times,
more carbon than they currently do?

Even more than that?

Joanne Chory: We don’t know
that number, really.

But they will do more.

CA: And at the same time,

make the soil that those
farmers have more fertile?

JC: Yes, right.

CA: So that is astonishing.

And the genius of doing that
and a solution that can scale

where there’s already scale.

JC: Yes, thank you for saying that.

CA: No, no, you said it, you said it.

But it almost seems too good to be true.

Your Audacious Project is that we scale up
the research in your lab

and pave the way to start
some of these pilots

and make this incredible vision possible.

JC: That’s right, yes, thank you.

CA: Joanne Chory, thank you so much.

Godspeed.

(Applause)

JC: Thank you.

我最近有一个顿悟。

我意识到我实际上可以

在解决当今人类面临的最大问题之一方面发挥作用

,那就是气候变化问题。

我也意识到
我已经工作了 30 年或更长时间,

只是为了达到我生命中的这一点,在

那里我实际上可以
为更大的问题做出贡献。

在过去的 30 年里
,我在实验室里所做的每一个实验,以及

在过去 30 年

里为我工作的
人在我的实验室里


的每一个实验,都是为了做真正的大实验,

这是最后一个大实验。

那我是谁?

我是植物遗传学家。

我生活在一个由于人类活动
而导致大气中二氧化碳含量过多的世界

但我开始欣赏这些植物

,因为它们是令人惊叹的机器,它们

的工作
实际上就是吸收二氧化碳。

他们做得很好,

因为他们已经这样做
了超过 5 亿年。

他们真的很擅长。

所以……

我也有一些紧迫的
事情想告诉你。

作为一个母亲,我想给
我的两个孩子一个

比我从父母那里继承来的更好的世界,

让它
朝着正确的方向前进,

而不是朝着坏的方向前进会更好。

但我也……

在过去的 15 年里,我一直患有帕金森氏症,

这让我有一种紧迫感
,我想现在就去做,

同时我感觉很好,
可以真正成为这个团队的一员。

而且我有一个令人难以置信的团队。

我们都一起工作

,这是我们想做的事情,
因为我们玩得很开心。

如果你只有
五个人试图拯救地球,

你们最好互相喜欢,

因为你们会
花很多时间在一起。

(笑声)

好的,好的。 但关于我就够了。

让我们谈谈二氧化碳。

二氧化碳是我演讲的主角。

现在,你们中的大多数人可能
认为二氧化碳是一种污染物。

或者你认为二氧化碳
是小说中的反派,你知道吗?

它总是二氧化碳的阴暗面。

但作为植物生物学家
,我实际上看到了二氧化碳的另一面。

而我们看到的二氧化碳,我们的

看法不同,因为
我认为我们记得,作为植物生物学家,

你可能已经忘记了一些东西。

那就是植物实际上
进行了这个称为光合作用的过程。

当它们进行光合作用时——

我们地球上所有以碳为基础的生命

都是因为植物
和其他光合微生物

从大气中的二氧化碳中吸收
进来的二氧化碳。

基本上,你体内几乎所有的碳
都来自空气。

所以你来自空气

,这是因为光合作用,

因为植物所做的
是它们利用阳光中的能量,

吸收二氧化碳并将其固定成糖。

这是一件很棒的事情。 我今天要告诉

你们的另一件
真正重要

的事情

是植物和其他
光合微生物

有很强的能力来做到这一点——是我们人类排放的二氧化碳

量的二十倍或更多。

活动。

因此,即使
我们

在减少排放和物质方面做得并不好

,植物

作为光合生物也有能力提供帮助。

所以我们希望他们会这样做。

但这里有一个问题。

我们必须自己帮助
植物,

因为植物喜欢做的
是将大部分二氧化碳转化为糖。


生长季节结束时

,植物死亡并分解,

然后他们所做的所有工作
从大气中吸出二氧化碳

并制造碳基生

物质现在基本上
以二氧化碳的形式重新回到大气中。

那么我们怎样才能让植物将
它们带来的二氧化碳重新分配


更稳定的东西中呢?

事实
证明,这种产品是植物制造的

,它被称为木栓质。

这是一种
存在于所有植物根部的天然产物。

软木真的很酷,

因为正如你所看到的,我希望,

在你看到黑点的任何地方,
那都是碳。

这个分子中有数百个。

在你看到那几个红点的地方,

那些是氧气。

氧气是微生物喜欢找到的东西

,它们可以分解植物。

所以你可以看到为什么这是
一个完美的碳储存装置。

实际上,它可以
将植物固定的碳稳定

化为
对植物更好的东西。

那么,为什么是现在?

为什么现在是
用生物学方法解决这个问题的好时机?

这是因为在过去
30 年左右的时间里

——我知道那是很长一段时间,
你会说,“为什么是现在?” ——

但 30 年前,我们开始了解一般生物体

中所有基因的功能

这包括人类以及植物

和许多其他复杂的真核生物。

那么,1980 年代是从什么开始的呢?

然后开始的是,我们现在

知道植物

中许多告诉植物生长的基因的功能。

现在
,这与我们可以

以比以往任何时候都更快、更便宜的方式进行基因组学的事实相融合

这告诉我们,
地球上的所有生命都是真正相关的,

但植物之间的关系比其他生物更密切

并且你可以
从一种植物中获取你知道的特性

并将其放入另一种植物中

,你可以
预测它会做同样的事情。

所以这也很重要。

最后,我们有了这些小的
遗传技巧,

就像你今天早上听到的那样

——比如 CRISPR,
它允许我们进行编辑

并使基因
与植物的正常状态略有不同。

好的,所以现在我们有了生物学。

我是一名生物学家,所以这就是为什么
我要提出一个

解决气候变化问题的方法

,这真的需要地球上最好的进化
有机体——植物来解决。

那么我们要怎么做呢?

生物学来拯救。

开始了。

行。

你必须记住
我谈话中的三件简单的事情,好吗?

我们必须让植物生产比通常生产更多的木栓质

因为我们需要它们
比它们现在的情况好一点。

我们必须让它们长出更多的根,

因为如果我们长出更多的根,
我们就可以长出更多的木栓质——

现在我们有了更多
木栓质喜欢在其中积累的细胞

。然后第三件事是,
我们希望植物能够 有更深的根源。

这样做的目的是——

我们实际上是在询问工厂,
“好吧,制造

比以往更多的稳定碳,

然后为我们将其埋在地下。”

所以他们可以做到这一点,
如果他们让根深入

而不是
在土壤表面蜿蜒曲折。

这是
我们想要改变的三个特征:

更多的软木,更多的根
,最后一个,深根。

然后我们想
在一种植物中结合所有这些特征

,我们可以很容易地
做到这一点,我们会做到,

而且我们实际上正在这样做,
在模式植物拟南芥中,

这使我们能够比我们更快地进行这些
实验

在另一个大工厂做。

当我们发现我们的植物
的特性都加起来了

,我们可以得到更多,
这些植物中有更多的木栓质,

我们将把它全部移动——

我们可以而且我们会,
我们开始这样做 这个——

把它移到农作物上。 当我谈到我演讲的

那部分时,我会告诉你为什么我们要采摘
作物来为我们工作

好的,所以我认为这是
整个事情背后的科学。

所以我知道我们可以做科学,
我对此很有信心。

原因是,
就在去年,

我们已经能够
找到影响这三个特征中的每一个的单个基因。

在其中几个案例中,
三分之二,

我们有不止一种方法可以到达那里。

所以这告诉我们,我们
甚至可以在一个性状中组合

并获得更多的木栓质。

这显示了一个结果

,我们右边的植物

产生的根量是

左边植物的两倍多

,这仅仅是因为
我们表达一种

基因的方式通常在植物

中略有不同
比植物通常自己做的方式。

好吧,这只是
我想给你看的一个例子。

现在我想告诉你,你知道

,实际上,

当我们遇到这个问题时,我们仍然面临很多挑战,

因为这需要……

我们必须让
农民真正购买种子,

或者至少 种子公司购买

农民想要的种子。

所以当我们做实验时,

我们实际上不能承受产量的损失,

因为当我们做
这些实验时,

比如说,从现在开始大约 10 年

,地球上的人口
将比现在更多。

而且它还在快速增长。

所以到本世纪末,
我们有 110 亿人,

我们已经浪费了生态系统,这些生态系统
实际上无法处理

他们必须从农业中承受的所有负荷

然后我们也
有土地竞争。

所以我们认为,做这个
碳封存实验

实际上需要相当多的土地。

我们不能把它从食物中拿走,

因为
我们必须养活地球上的人们,

直到我们度过这场大危机。

气候变化实际上正在
导致整个地球的产量损失。

那么,

如果种子会影响产量,农民为什么要购买种子呢?

因此,我们不会让它影响产量,

我们将始终
进行制衡

,决定是否继续进行该实验。

然后第二件事是,
当植物实际上制造更多的碳

并将其埋在土壤中时,由于农业的负荷,

地球上几乎所有的土壤
实际上都耗尽了碳

试图养活 80 亿人,

这是
现在地球上生活着什么。

所以,这也是一个问题。

制造更多碳的植物,
这些土壤富含碳。

富含碳的土壤
实际上含有氮

、硫
和磷酸盐——

植物生长和高产所需的所有矿物质。

它们还保留
土壤中的水分。

所以木栓质会分解
成小颗粒

,给整个土壤带来新的质地。

正如我们已经证明
我们可以在土壤中获得更多的碳

,土壤会变得更黑。

因此,我们将
能够衡量所有这些,

并希望这将帮助
我们解决问题。

那么好吧。

所以我们面临
着需要使用大量土地的挑战,

我们必须让农民购买它

,这对我们来说将
是困难的事情,我认为,

因为我们不是真正的推销员,

我们是 喜欢谷歌
而不是认识他们的人,

你明白我的意思吗?

(笑声)

这就是科学家们大多的样子。

但我们现在知道,你知道,
没有人可以真正否认

——气候正在变化,
每个人都知道这一点。

它就在这里,而且很糟糕
而且很严重

,我们需要对此采取一些措施。

但我
对我们能够做到这一点感到非常乐观。

所以我今天在这里
作为植物的性格见证人。

我想告诉你
,植物会为我们做这件事

,我们所要做的
就是给他们一点帮助

,他们就会去
为人类获得金牌。

非常感谢你。

(掌声)

(干杯)

谢谢。

(鼓掌)

我终于把它弄出来了。

克里斯安德森:哇。

乔安妮,你真了不起。

只是为了确保我们没听错:

您相信在接下来的 10 年内

您可能能够

为主要作物提供世界种子变种,
例如 - 什么? ——小麦、玉米,也许还有大米,

它们可以为农民提供与目前一样多的产量,

吸收三、四倍的
碳?

甚至更多?

Joanne Chory:我们不知道
这个数字,真的。

但他们会做得更多。

CA:同时,

让那些
农民拥有的土壤更肥沃?

JC:是的,没错。

CA:这太令人惊讶了。

这样做的天才
和一个可以在已经有规模的地方扩展的解决方案

JC:是的,谢谢你这么说。

CA:不,不,你说过,你说过。

但这似乎好得令人难以置信。

您的大胆项目是我们扩大
您实验室的研究规模,

并为启动
其中一些试点铺平道路

,并使这一令人难以置信的愿景成为可能。

JC:是的,是的,谢谢。

CA:乔安妮·乔里,非常感谢。

神速。

(掌声)

JC:谢谢。