The amazing ways plants defend themselves Valentin Hammoudi

This is a tomato plant,

and this is an aphid slowly killing
the tomato plant

by sucking the juice out of its leaves.

The tomato is putting up a fight
using both physical and chemical defenses

to repel the attacking insects.

But that’s not all.

The tomato is also releasing compounds
that signal nearby tomato plants

to release their own insect repellent.

Plants are constantly under attack.

They face threats ranging from
microscopic fungi and bacteria,

small herbivores, like aphids,
caterpillars, and grasshoppers,

up to large herbivores, like tortoises,
koalas, and elephants.

All are looking to devour plants
to access the plentiful nutrients

and water in their leaves, stems,
fruits, and seeds.

But plants are ready with a whole
series of internal and external defenses

that make them a much less
appealing meal,

or even a deadly one.

Plants' defenses start at their surface.

The bark covering tree trunks is full
of lignin,

a rigid web of compounds that’s
tough to chew

and highly impermeable to pathogens.

Leaves are protected by
a waxy cuticle

that deters insects and microbes.

Some plants go a step further
with painful structures

to warn would-be predators.

Thorns, spines, and prickles
discourage bigger herbivores.

To deal with smaller pests, some plants'
leaves have sharp hair-like structures

called trichomes.

The kidney bean plant sports tiny
hooks to stab the feet of bed bugs

and other insects.

In some species, trichomes also dispense
chemical irritants.

Stinging nettles release a mixture
of histamine and other toxins

that cause pain and inflammation
when touched.

For other plant species, the pain comes
after an herbivore’s first bite.

Spinach,

kiwi fruit,

pineapple,

fuchsia

and rhubarb all produce microscopic
needle-shaped crystals called raphides.

They can cause tiny wounds in the inside
of animals' mouths,

which create entry points for toxins.

The mimosa plant has a strategy
designed to prevent herbivores

from taking a bite at all.

Specialized mechanoreceptor cells
detect touch

and shoot an electrical signal
through the leaflet to its base

causing cells there to release
charged particles.

The buildup of charge draws
water out of these cells

and they shrivel,
pulling the leaflet closed.

The folding movement scares insects away

and the shrunken leaves look less
appealing to larger animals.

If these external defenses are breached,

the plant immune system
springs into action.

Plants don’t have a separate immune system
like animals.

Instead, every cell has the ability
to detect and defend against invaders.

Specialized receptors can recognize
molecules that signal the presence

of dangerous microbes or insects.

In response, the immune system initiates
a battery of defensive maneuvers.

To prevent more pathogens from making
their way inside,

the waxy cuticle thickens and cell walls
get stronger.

Guard cells seal up pores in the leaves.

And if microbes are devouring one section
of the plant,

those cells can self-destruct
to quarantine the infection.

Compounds toxic to microbes and insects
are also produced,

often tailor-made for a specific threat.

Many of the plant molecules that humans
have adopted

as drugs, medicines and seasonings

evolved as part of plants' immune systems
because they’re antimicrobial,

or insecticidal.

An area of a plant under attack can alert
other regions using hormones,

airborne compounds,

or even electrical signals.

When other parts of the plant detect
these signals,

they ramp up production
of defensive compounds.

And for some species, like tomatoes,

this early warning system also
alerts their neighbors.

Some plants can even recruit
allies to adopt a strong offense

against their would-be attackers.

Cotton plants under siege by caterpillars

release a specific cocktail of ten
to twelve chemicals into the air.

This mixture attracts parasitic wasps
that lay eggs inside the caterpillars.

Plants may not be able to flee the scene
of an attack,

or fight off predators with teeth
and claws,

but with sturdy armor,

a well-stocked chemical arsenal,

a neighborhood watch,

and cross-species alliances,

a plant isn’t always an easy meal.

这是一种番茄植物

,这是一种蚜虫

,它通过从番茄叶子中吸出汁液来慢慢杀死番茄植物。

番茄正在
使用物理和化学防御

来击退攻击昆虫。

但这还不是全部。

番茄还释放化合物
,向附近的番茄植物发出信号

,释放它们自己的驱虫剂。

植物不断受到攻击。

它们面临的威胁范围从
微小的真菌和细菌、

小型食草动物(如蚜虫、
毛虫和蚱蜢

)到大型食草动物(如乌龟、
考拉和大象)。

所有人都希望吞食植物,

以获取叶子、茎、
果实和种子中丰富的营养和水分。

但是植物已经准备好了
一系列内部和外部防御

,这使它们成为不那么
吸引人的一餐,

甚至是致命的一餐。

植物的防御始于它们的表面。

覆盖树干的树皮充满
了木质素,这

是一种坚硬的化合物网络,
难以咀嚼

并且对病原体高度不渗透。

叶子
受到蜡质角质层

的保护,可以阻止昆虫和微生物。

一些植物更进一步,
通过痛苦的结构

来警告潜在的捕食者。

荆棘、刺和刺会
阻止更大的食草动物。

为了对付较小的害虫,一些植物的
叶子有尖锐的毛发状结构,

称为毛状体。

芸豆植物带有小
钩子,可以刺入臭虫

和其他昆虫的脚。

在某些物种中,毛状体还会散发
化学刺激物。

带刺的荨麻释放
出组胺和其他毒素

的混合物,当被触摸时会引起疼痛和炎症

对于其他植物物种,疼痛
来自草食动物的第一口。

菠菜、

猕猴桃、

菠萝、

紫红色

和大黄都会产生
称为针晶的微小针状晶体。

它们会在动物的嘴巴内部造成微小的伤口

从而为毒素创造入口点。

含羞草植物有一种
旨在防止

食草动物咬一口的策略。

专门的机械感受器细胞
检测到触摸


通过传单向其基部发射电信号,

导致那里的细胞释放
带电粒子。

电荷的积聚将
水从这些细胞中吸出

,它们会萎缩,
从而拉动小叶关闭。

折叠运动会吓跑昆虫,

而且缩小的叶子看起来
对较大的动物不那么有吸引力。

如果这些外部防御被破坏

,植物免疫系统
就会开始行动。

植物不像动物那样有独立的免疫系统

相反,每个细胞都有
能力检测和防御入侵者。

专门的受体可以识别
发出

危险微生物或昆虫存在信号的分子。

作为回应,免疫系统启动
了一系列防御动作。

为了防止更多
病原体进入

,蜡质角质层变厚,细胞壁
变得更坚固。

保卫细胞封闭叶子上的毛孔。

如果微生物正在吞噬
植物的一部分,

这些细胞可以自我毁灭
以隔离感染。 还生产

对微生物和昆虫有毒的化合物

通常是针对特定威胁量身定制的。

人类

作为药物、药物和调味料采用的许多植物分子

进化为植物免疫系统的一部分,
因为它们具有抗菌

或杀虫作用。

受到攻击的植物
区域可以使用激素、

空气传播的化合物

甚至电信号向其他区域发出警报。

当工厂的其他部分检测到
这些信号时,

它们会增加
防御性化合物的产量。

对于某些物种,例如西红柿,

这种预警系统还会
提醒它们的邻居。

一些植物甚至可以招募
盟友

对他们的潜在攻击者采取强有力的进攻。

被毛毛虫围攻的棉花植物向空气中

释放出一种由十
到十二种化学物质组成的特定混合物。

这种混合物会吸引
在毛虫内产卵的寄生蜂。

植物可能无法逃离
袭击现场,

或无法用牙齿
和爪子击退掠食者,

但凭借坚固的盔甲

、储备充足的化学武器库

、邻里守望

和跨物种联盟

,植物并不总是 一顿简单的饭菜。