Your body vs. implants Kaitlyn Sadtler

Insulin pumps improve the lives

of many of the 415 million people
with diabetes around the world

by monitoring blood sugar, delivering
insulin,

and preventing the need for constant
finger-pricking and blood testing.

These small machines include a pump and
a needle, which can sense glucose levels,

feed back to the pump,

and then calculate how much insulin
to deliver through the needle.

But they have a catch: they’re temporary.

Within a few days, glucose sensors have to
be moved and replaced.

And it’s not just glucose monitors and
insulin pumps that have this problem,

but all bodily implants,
at different time scales.

Plastic prosthetic knees have to be
replaced after about 20 years.

Other implants, such as those used for
cosmetic reasons,

can meet the same fate in about 10.

That isn’t just a nuisance: it
can be expensive and risky.

This inconvenience happens because of
our bodies’ immune systems.

Honed by several hundred million
years of evolution,

these defensive fronts

have become exceptionally good
at identifying foreign objects.

Our immune systems boast

an impressive arsenal of tools to tackle,
intercept, and destroy

anything they believe shouldn’t be there.

But the consequence of this constant
surveillance

is that our bodies treat helpful
implants, like insulin pumps,

with the same suspicion as they would
a harmful virus or bacteria.

As soon as the insulin pump has been
implanted in the skin,

its presence triggers what’s known as a
“foreign body response.”

This starts with free-floating proteins

that stick themselves to the surface
of the implant.

Those proteins include antibodies,

which attempt to neutralize the new object

and send out a signal that calls other
immune cells to the site

to strengthen the attack.

Early-responding inflammatory cells,

like neutrophils and macrophages,

respond to the emergency call.

Neutrophils release little granules filled
with enzymes

that try to break down the surface
of the insulin pump’s needle.

Macrophages secrete enzymes too,

together with nitric oxide radicals,

which create a chemical reaction that
degrades the object over time.

If the macrophages are unable to dispatch
the foreign body rapidly,

they fuse together, forming a mass of
cells called a “giant cell.”

At the same time, cells called fibroblasts

travel to the site and begin to deposit
layers of dense connective tissue.

Those enclose the needle that the pump
uses to deliver insulin

and test for glucose levels.

Over time this scaffolding builds up,

forming a scar around the implant.

The scar functions as an almost
impenetrable wall

that might start to block vital
interactions

between the body and the implant.

For example, scarring around pacemakers
can interrupt

the electrical transmission that’s
crucial for their functioning.

Synthetic knee joints may give off
particles as they’re worn down,

causing immune cells to inflame
around these fragments.

Tragically, the immune system’s attack
can even be life-threatening.

However, researchers are finding ways
to trick the immune system

into accepting the new devices we
introduce into our bodily tissues.

We’ve discovered that coating implants
with certain chemicals and drugs

can dampen the immune response.

Those basically make the implants
invisible to the immune system.

We’re also making more implants
out of natural materials

and in forms that directly mimic tissues,

so that the body launches a weaker attack

than it would if it came across a
completely artificial implant.

Some medical treatments involve implants

designed to regenerate lost
or damaged tissues.

In those cases, we can design the implants
to contain ingredients

that will release specific signals,

and carefully tailor our bodies’
immune reactions.

In the future, this way of working
alongside the immune system

could help us develop completely
artificial organs,

totally integrative prostheses,

and self-healing wound therapies.

These treatments might one day
revolutionize medicine–

and transform, forever,
the bodies we live in.

胰岛素泵

通过监测血糖、输送
胰岛素

和避免不断
刺手指和验血的需要,改善了全球 4.15 亿糖尿病患者中许多人的生活。

这些小型机器包括一个泵和
一个针头,它们可以感应葡萄糖水平,

反馈给泵,

然后计算
通过针头输送多少胰岛素。

但他们有一个问题:他们是暂时的。

几天之内,
必须移动和更换葡萄糖传感器。

不仅仅是血糖监测仪和
胰岛素泵有这个问题

,所有的身体植入物都存在这个问题,
在不同的时间尺度上。

大约 20 年后必须更换塑料假膝。

其他植入物,例如用于
美容目的的植入物,

大约 10 年就会遇到同样的命运。

这不仅仅是麻烦:它
可能既昂贵又危险。

这种不便的发生是因为
我们身体的免疫系统。

经过几亿
年的进化磨练,

这些防御性战线在识别异物

方面变得异常出色

我们的免疫系统拥有

令人印象深刻的工具库,可以处理、
拦截和摧毁

他们认为不应该存在的任何东西。

但这种持续监视的结果

是,我们的身体对待有用的
植入物,如胰岛素泵,就像

对待有害病毒或细菌一样怀疑。

一旦胰岛素泵被
植入皮肤,

它的存在就会触发所谓的
“异物反应”。

首先是自由漂浮的蛋白质

,它们会粘
在植入物的表面。

这些蛋白质包括抗体,

它们试图中和新物体

并发出信号,将其他
免疫细胞召唤到该部位

以加强攻击。

早期反应的炎症细胞,

如中性粒细胞和巨噬细胞,

会对紧急呼叫作出反应。

中性粒细胞释放出
充满酶的小颗粒,这些

酶试图破坏
胰岛素泵针的表面。

巨噬细胞也会分泌酶

以及一氧化氮自由基,

这些酶会产生化学反应,
随着时间的推移降解物体。

如果巨噬细胞不能
迅速排出异物,

它们就会融合在一起,形成一团
被称为“巨细胞”的细胞。

与此同时,称为成纤维细胞的细胞

会到达该部位并开始沉积
致密的结缔组织层。

那些封装了泵
用来输送胰岛素

和测试葡萄糖水平的针头。

随着时间的推移,这种脚手架会堆积起来,

在植入物周围形成疤痕。

疤痕就像一堵几乎
无法穿透的墙

,可能会开始阻止

身体和植入物之间的重要相互作用。

例如,起搏器周围的疤痕
会中断

对其功能至关重要的电传输。

合成膝关节
在磨损时可能会释放颗粒,

导致免疫细胞
在这些碎片周围发炎。

可悲的是,免疫系统的
攻击甚至可能危及生命。

然而,研究人员正在寻找方法
来诱使免疫系统

接受我们引入身体组织的新设备

我们发现,在植入物
上涂上某些化学物质和药物

会抑制免疫反应。

这些基本上使植入物
对免疫系统不可见。

我们还
用天然材料

和直接模仿组织的形式制造更多的植入物,

这样身体

会比遇到
完全人造的植入物时发动更弱的攻击。

一些医学治疗涉及

旨在再生丢失
或受损组织的植入物。

在这些情况下,我们可以设计植入物

包含会释放特定信号的成分,

并仔细调整我们身体的
免疫反应。

将来,这种
与免疫系统一起工作的方式

可以帮助我们开发完全
人造器官、

完全集成的假肢

和自愈伤口疗法。

这些疗法有朝一日可能会
彻底改变医学——

并永远改变
我们生活的身体。