Solid liquid gas and plasma Michael Murillo

Have you ever seen static electricity
cause a spark of light?

What is that spark?

What about lightning,

the Northern Lights,

or the tail of a comet?

All of those things, and many others,

in fact 99.9% of the universe,
are made of plasma.

Plasma is a state of matter

drastically different
from the more familiar forms.

Take ice, for example.

Ice, a solid,
melts to become water, a liquid,

which, when heated,
vaporizes into steam, a gas.

Continued heating of the steam
at a high enough temperature

causes the water molecules
in it to separate

into freely roaming hydrogen
and oxygen atoms.

With a little more heat,
the ionization process occurs

and the negatively charged electrons
escape the atoms,

leaving behind positively charged ions.

This mixture of freely roaming negative
and positive charges is plasma,

and at a high enough temperature,
any gas can be made into one.

These freely moving charged particles
behave very differently

from the particles
in other types of matter.

When a doorknob, a solid,
has static electricity on it,

it doesn’t look or behave any differently.

And with the exception of a compass
or other magnetic object,

we rarely see matter
respond to a magnetic field.

But put a plasma in an electric field
or magnetic field,

and you’ll get a very different reaction.

Because plasmas are charged,

electric fields accelerate them,

and magnetic fields steer them
in circular orbits.

And when the particles
within plasma collide,

or accelerated
by electricity or magnetism,

light is generated,

which is what we see
when we look at plasmas

like the Aurora Borealis.

Plasmas aren’t just beautiful,
celestial phenomena, though.

Imagine a tiny cube made of normal gas
with a very high voltage across it.

The resulting electric field

pushes some of the electrons off the atoms
and accelerates them to high speeds

causing the ionization of other atoms.

Imbedded impurities
in the tiny cube of gas

cause it to gain and release
a precise amount of energy

in the form of ultraviolet radiation.

Attached to each tiny cube,

a fluorescent material glows
with a specific color

when ultraviolet light
at just the right intensity reaches it.

Now, make a rectangle
out of a million of these tiny cubes,

each separately controlled
by sophisticated electronics.

You may be looking at one now.

This is called a plasma TV.

Plasmas also have implications
for health care.

Plasma chemists create
highly specific plasmas

that can destroy
or alter targeted chemicals,

thereby killing pathogenic organisms
on food or hospital surfaces.

Plasmas are all around us,

in forms that are both spectacular
and practical.

And in the future, plasma could be used

to permanently rid
landfills of their waste,

efficiently remove toxins
from our air and water,

and provide us with a potentially
unlimited supply

of renewable clean energy.

你见过静电
引起光的火花吗?

那火花是什么?

闪电

、北极光

或彗尾呢?

所有这些东西,以及许多其他东西

,实际上 99.9% 的宇宙,
都是由等离子体构成的。

等离子体是一种

与更熟悉的形式截然不同的物质状态。

以冰为例。

冰,一种固体,
融化成水,一种液体

,当加热时,它会
蒸发成蒸汽,一种气体。

在足够高的温度下持续加热蒸汽

会导致其中的水
分子分离

成自由漫游的氢
原子和氧原子。

再加热一点
,就会发生电离过程

,带负电的电子会
从原子中逸出,

留下带正电的离子。

这种自由漫游的负
电荷和正电荷的混合物就是等离子体

,在足够高的温度下,
任何气体都可以变成一种气体。

这些自由移动的带电粒子的
行为与

其他类型物质中的粒子非常不同。

当一个门把手,一个固体,上面
有静电时,

它的外观或行为没有任何不同。

除了指南针
或其他磁性物体外,

我们很少看到物质
对磁场有反应。

但是将等离子体置于电场
或磁场中

,你会得到截然不同的反应。

因为等离子体是带电的,

电场会加速它们,

而磁场会将它们引导
到圆形轨道上。


等离子体中的粒子发生碰撞,

或者
被电或磁加速时,

就会产生光,

这就是我们
在观察像北极光这样的等离子体时所看到的

不过,等离子体不仅仅是美丽的
天体现象。

想象一个由普通气体制成的小立方体
,上面有非常高的电压。

由此产生的电场

将一些电子推离原子
并将它们加速到高速,

从而导致其他原子的电离。

嵌入
在微小气体立方体中的杂质

使其以紫外线辐射的形式获得和
释放精确的能量

附着在每个微小立方体上

的荧光材料

在适当强度的紫外线照射到它时会发出特定颜色的光。

现在,
用一百万个这样的小立方体制作一个矩形,每个立方体

都由复杂的电子设备单独控制。

你现在可能正在看一个。

这被称为等离子电视。

血浆
对医疗保健也有影响。

等离子体化学家产生
高度特异性的等离子体

,可以破坏
或改变目标化学物质,

从而杀死
食品或医院表面上的病原微生物。

等离子体在我们身边无处不在,其

形式既壮观
又实用。

未来,等离子可

用于永久清除
垃圾填埋场的废物,

有效去除
空气和水中的毒素,

并为我们提供可能
无限供应

的可再生清洁能源。