Group theory 101 How to play a Rubiks Cube like a piano Michael Staff

How can you play a Rubik’s Cube?

Not play with it,
but play it like a piano?

That question doesn’t
make a lot of sense at first,

but an abstract mathematical field
called group theory holds the answer,

if you’ll bear with me.

In math, a group is a particular
collection of elements.

That might be a set of integers,

the face of a Rubik’s Cube,

or anything,

so long as they follow
four specific rules, or axioms.

Axiom one:

all group operations must be closed
or restricted to only group elements.

So in our square,
for any operation you do,

like turn it one way or the other,

you’ll still wind up with
an element of the group.

Axiom two:

no matter where we put parentheses
when we’re doing a single group operation,

we still get the same result.

In other words, if we turn our square
right two times, then right once,

that’s the same as once, then twice,

or for numbers, one plus two
is the same as two plus one.

Axiom three:

for every operation, there’s an element
of our group called the identity.

When we apply it
to any other element in our group,

we still get that element.

So for both turning the square
and adding integers,

our identity here is zero,

not very exciting.

Axiom four:

every group element has an element
called its inverse also in the group.

When the two are brought together
using the group’s addition operation,

they result in the identity element, zero,

so they can be thought of
as cancelling each other out.

So that’s all well and good,
but what’s the point of any of it?

Well, when we get beyond
these basic rules,

some interesting properties emerge.

For example, let’s expand our square
back into a full-fledged Rubik’s Cube.

This is still a group
that satisfies all of our axioms,

though now
with considerably more elements

and more operations.

We can turn each row
and column of each face.

Each position is called a permutation,

and the more elements a group has,
the more possible permutations there are.

A Rubik’s Cube has more
than 43 quintillion permutations,

so trying to solve it randomly
isn’t going to work so well.

However, using group theory
we can analyze the cube

and determine a sequence of permutations
that will result in a solution.

And, in fact, that’s exactly
what most solvers do,

even using a group theory notation
indicating turns.

And it’s not just good for puzzle solving.

Group theory is deeply embedded
in music, as well.

One way to visualize a chord
is to write out all twelve musical notes

and draw a square within them.

We can start on any note,
but let’s use C since it’s at the top.

The resulting chord is called
a diminished seventh chord.

Now this chord is a group
whose elements are these four notes.

The operation we can perform on it
is to shift the bottom note to the top.

In music that’s called an inversion,

and it’s the equivalent
of addition from earlier.

Each inversion changes
the sound of the chord,

but it never stops being
a C diminished seventh.

In other words, it satisfies axiom one.

Composers use inversions to manipulate
a sequence of chords

and avoid a blocky,
awkward sounding progression.

On a musical staff,
an inversion looks like this.

But we can also overlay it onto our square
and get this.

So, if you were to cover your entire
Rubik’s Cube with notes

such that every face of the solved cube
is a harmonious chord,

you could express the solution
as a chord progression

that gradually moves
from discordance to harmony

and play the Rubik’s Cube,
if that’s your thing.

你怎么能玩魔方?

不玩它,
而是像钢琴一样弹奏它?

这个问题起初并没有
多大意义,

但是如果你能忍受我的话,一个叫做群论的抽象数学领域可以给出
答案

在数学中,组是元素的特定
集合。

这可能是一组整数、

魔方的面

或任何东西,

只要它们遵循
四个特定的规则或公理。

公理一:

所有群操作必须是封闭的
或仅限于群元素。

因此,在我们的方格中,
对于您进行的任何操作,

例如以一种或另一种方式转动它,

您仍然会
得到该组的一个元素。

公理二:

无论
我们在进行单组运算时将括号放在哪里,

我们仍然得到相同的结果。

换句话说,如果我们将正方形
向右转两次,然后向右转一次,

这与一次,然后两次相同,

或者对于数字,一加二
与二加一相同。

公理三:

对于每个操作,
我们组中都有一个元素,称为身份。

当我们将它
应用于我们组中的任何其他元素时,

我们仍然会得到该元素。

所以对于翻转平方
和添加整数,

我们这里的身份都是零,

不是很令人兴奋。

公理四:

每个群元素在群中都有一个元素,
称为它的逆元素。


使用组的加法运算将两者结合在一起时,

它们会产生单位元素零,

因此可以将它们
视为相互抵消。

所以这一切都很好,
但有什么意义呢?

好吧,当我们超越
这些基本规则时,就会

出现一些有趣的特性。

例如,让我们将正方形扩展
回一个成熟的魔方。

这仍然是一个
满足我们所有公理的组,

尽管现在
有更多的元素

和更多的操作。

我们可以转动
每个面的每一行和每一列。

每个位置称为一个排列

,一个组的元素
越多,可能的排列就越多。

魔方有
超过 43 个 quintillion 排列,

因此尝试随机解决
它不会那么好用。

但是,使用群论,
我们可以分析立方体


确定将产生解决方案的排列序列。

而且,事实上,这
正是大多数求解器所做的,

即使使用表示转弯的群论符号也是如此

它不仅有利于解谜。

群论也深深植根
于音乐之中。

可视化和弦的一种方法
是写出所有十二个音符

并在其中画一个正方形。

我们可以从任何音符开始,
但让我们使用 C,因为它位于顶部。

由此产生的和弦
称为减七和弦。

现在这个和弦是一个组,
其元素是这四个音符。

我们可以对其执行的操作
是将底部音符移到顶部。

在音乐中称为反转

,它相当于
前面的加法。

每次转位都会改变
和弦的声音,

但它永远不会停止
成为 C 减七度。

换句话说,它满足公理一。

作曲家使用转位来处理
一系列和弦

,避免出现块状、
尴尬的音序。

在乐谱上
,倒转看起来像这样。

但是我们也可以将它覆盖到我们的正方形上
并得到它。

所以,如果你用音符覆盖你的整个
魔方,

这样解出的魔方的每个面
都是一个和弦,

你可以将解决方案表达
为一个

逐渐
从不和谐到和声的和弦进行,

然后演奏魔方,
如果那是 你的东西。