The physics of playing guitar Oscar Fernando Perez

Hendrix, Cobain and Page.

They can all shred,

but how exactly do the iconic
contraptions in their hands

produce notes, rhythm, melody and music.

When you pluck a guitar string, you create
a vibration called a standing wave.

Some points on the string, called nodes,
don’t move at all,

while other points, anti-nodes,
oscillate back and forth.

The vibration translates through the neck
and bridge to the guitar’s body,

where the thin and flexible wood vibrates,

jostling the surrounding air molecules
together and apart.

These sequential compressions
create sound waves,

and the ones inside the guitar
mostly escape through the hole.

They eventually propagate to your ear,

which translates them into
electrical impulses

that your brain interprets as sound.

The pitch of that sound depends on
the frequency of the compressions.

A quickly vibrating string will cause
a lot of compressions close together,

making a high-pitched sound,

and a slow vibration
produces a low-pitched sound.

Four things affect the frequency
of a vibrating string:

the length, the tension,
the density and the thickness.

Typical guitar strings
are all the same length,

and have similar tension,
but vary in thickness and density.

Thicker strings vibrate more slowly,
producing lower notes.

Each time you pluck a string,

you actually create
several standing waves.

There’s the first fundamental wave,
which determines the pitch of the note,

but there are also waves
called overtones,

whose frequencies
are multiples of the first one.

All these standing waves combine
to form a complex wave with a rich sound.

Changing the way you pluck the string
affects which overtones you get.

If you pluck it near the middle,

you get mainly the fundamental
and the odd multiple overtones,

which have anti-nodes
in the middle of the string.

If you pluck it near the bridge,
you get mainly even multiple overtones

and a twangier sound.

The familiar Western scale is based on
the overtone series of a vibrating string.

When we hear one note played with another
that has exactly twice its frequency,

its first overtone,

they sound so harmonious
that we assign them the same letter,

and define the difference between them
as an octave.

The rest of the scale
is squeezed into that octave

divided into twelve half steps

whose frequency is each 2^(1/12)
higher than the one before.

That factor determines the fret spacing.

Each fret divides the string’s
remaining length by 2^(1/12),

making the frequencies
increase by half steps.

Fretless instruments, like violins,

make it easier to produce the infinite
frequencies between each note,

but add to the challenge
of playing intune.

The number of strings and their tuning

are custom tailored
to the chords we like to play

and the physiology of our hands.

Guitar shapes and materials can also vary,

and both change the nature
and sound of the vibrations.

Playing two or more
strings at the same time

allows you to create new wave patterns
like chords and other sound effects.

For example, when you play two notes
whose frequencies are close together,

they add together to create a sound wave
whose amplitude rises and falls,

producing a throbbing effect,
which guitarists call the beats.

And electric guitars give you
even more to play with.

The vibrations still start in the strings,

but then they’re translated
into electrical signals by pickups

and transmitted to speakers
that create the sound waves.

Between the pickups and speakers,

it’s possible to process
the wave in various ways,

to create effects like distortion,
overdrive, wah-wah, delay and flanger.

And lest you think that the physics
of music is only useful for entertainment,

consider this.

Some physicists think that everything
in the universe

is created by the harmonic series
of very tiny, very tense strings.

So might our entire reality

be the extended solo
of some cosmic Jimi Hendrix?

Clearly, there’s a lot more to strings
than meets the ear.

亨德里克斯、柯本和佩奇。

他们都可以切碎,

但他们手中的标志性装置究竟是如何

产生音符、节奏、旋律和音乐的。

当您拨动吉他弦时,会产生
一种称为驻波的振动。

弦上的一些点,称为节点,
根本不移动,

而其他点,波腹
,来回摆动。

振动通过琴颈
和琴桥传递到吉他的琴身

,薄而柔韧的木头在那里振动,

将周围的空气分子推挤
在一起和分开。

这些连续的压缩会
产生声波,

而吉他内部的声波
大部分会从孔中逸出。

它们最终会传播到您的耳朵,

这会将它们转化为

您的大脑将其解释为声音的电脉冲。

该声音的音高
取决于压缩的频率。

快速振动的琴弦会
导致大量压缩并拢,

发出高音

,慢速振动
会产生低音。

影响
弦振动频率的因素有四

:长度、张力
、密度和粗细。

典型的吉他琴弦
长度相同

,张力相似,
但粗细和密度不同。

较粗的琴弦振动得更慢,
产生较低的音符。

每次拨弦时

,实际上都会产生
几个驻波。

有第一个基波,
它决定了音符的音高,

但也有
称为泛音的波,

其频率
是第一个的倍数。

所有这些驻波结合
起来形成一个复杂的波,声音丰富。

改变你拨弦的方式
会影响你得到的泛音。

如果你在靠近中间的地方拨动它,

你会得到主要的基音
和奇数倍泛音,

它们
在弦的中间有波腹。

如果你在琴桥附近弹奏它,
你会得到更多的泛音

和更轻的声音。

熟悉的西方音阶
是基于振动弦的泛音系列。

当我们听到一个音符与另一个音符
的频率正好是它的两倍,即

它的第一个泛音时,

它们听起来很和谐
,以至于我们给它们分配了相同的字母,

并将它们之间的差异定义
为一个八度。

音阶的其余部分
被压缩到分为十二个半音的八度音阶中,

其频率每
一个都比前一个高 2^(1/12)。

该因素决定了音柱间距。

每个品格将弦的
剩余长度除以 2^(1/12),

使频率
增加半步。

小提琴等无品品乐器

更容易
在每个音符之间产生无限频率,

但增加
了演奏 intune 的挑战。

琴弦的数量和它们的调音

是根据
我们喜欢演奏的和弦

和我们手的生理特性定制的。

吉他的形状和材料也可以变化,

并且都会改变振动的性质
和声音。

同时弹奏两根或多
根弦

可以让您创建新的波形模式,
如和弦和其他音效。

例如,当您弹奏两个
频率接近的音符时,

它们会加在一起形成
振幅上升和下降的声波

,从而产生跳动的效果
,吉他手称之为节拍。

电吉他给你
更多的演奏。

振动仍然从琴弦开始,

但随后它们
被拾音器转换为电信号

并传输
到产生声波的扬声器。

在拾音器和扬声器之间

,可以
以各种方式处理波形,

以创建失真、
过载、哇音、延迟和镶边等效果。

为了避免您认为
音乐的物理特性只对娱乐有用,请

考虑这一点。

一些物理学家认为,宇宙中的一切

都是由
非常微小、非常紧张的弦的谐波系列创造的。

那么我们的整个现实

可能
是一些宇宙吉米亨德里克斯的延伸独奏吗?

显然,琴弦的意义
远不止耳朵所能听到的。