Can you solve the false positive riddle Alex Gendler

Mining unobtainium is hard work.

The rare mineral appears
in only 1% of rocks in the mine.

But your friend Tricky Joe
has something up his sleeve.

The unobtainium detector he’s been
perfecting for months is finally ready.

The device never fails
to detect unobtainium if any is present.

Otherwise, it’s still highly reliable,

returning accurate
readings 90% of the time.

On his first day trying
it out in the field,

the device goes off, and
Joe happily places the rock in his cart.

As the two of you head back to camp
where the ore can be examined,

Joe makes you an offer:

he’ll sell you the ore for just $200.

You know that a piece of unobtanium
that size would easily be worth $1000,

but any other minerals
would be effectively worthless.

Should you make the trade?

Pause here if you want
to figure it out for yourself.

Answer in: 3

Answer in: 2

Answer in: 1

Intuitively, it seems like a good deal.

Since the detector
is correct most of the time,

shouldn’t you be able
to trust its reading?

Unfortunately, no.

Here’s why.

Imagine the mine
has exactly 1,000 pieces of ore.

An unobtainium rarity of 1%

means that there are only 10 rocks
with the precious mineral inside.

All 10 would set off the detector.

But what about the other 990
rocks without unobtainium?

Well, 90% of them,
891 rocks, to be exact,

won’t set off anything.

But 10%, or 99 rocks,
will set off the detector

despite not having unobtanium,

a result known as a false positive.

Why does that matter?

Because it means that all in all,

109 rocks will have
triggered the detector.

And Joe’s rock could be any one of them,

from the 10 that contain the mineral

to the 99 that don’t,

which means the chances of it containing
unobtainium are 10 out of 109 – about 9%.

And paying $200 for a 9%
chance of getting $1000 isn’t great odds.

So why is this result so unexpected,

and why did Joe’s rock seem
like such a sure bet?

The key is something called
the base rate fallacy.

While we’re focused on the relatively
high accuracy of the detector,

our intuition makes us forget to account

for how rare the unobtanium
was in the first place.

But because the device’s error rate of 10%

is still higher than
the mineral’s overall occurrence,

any time it goes off is still more likely
to be a false positive

than a real finding.

This problem is an example
of conditional probability.

The answer lies neither in the overall
chance of finding unobtainium,

nor the overall chance
of receiving a false positive reading.

This kind of background information
that we’re given before anything happens

is known as unconditional,
or prior probability.

What we’re looking for, though,
is the chance of finding unobtainium

once we know that the device did
return a positive reading.

This is known as the conditional,
or posterior probability,

determined once the possibilities have
been narrowed down through observation.

Many people are confused
by the false positive paradox

because we have a bias
for focusing on specific information

over the more general,

especially when immediate decisions
come into play.

And while in many cases
it’s better to be safe than sorry,

false positives can have
real negative consequences.

False positives in medical testing
are preferable to false negatives,

but they can still lead to stress or
unnecessary treatment.

And false positives in mass surveillance

can cause innocent people to be
wrongfully arrested, jailed, or worse.

As for this case, the one thing
you can be positive about

is that Tricky Joe is trying
to take you for a ride.

挖掘 unobtainium 是一项艰苦的工作。

稀有矿物
仅出现在矿山中 1% 的岩石中。

但是你的朋友 Tricky Joe
有事可做。

他几个月来一直在完善的未获得的探测器
终于准备好了。

如果存在 unobtainium,该设备永远不会检测不到 unobtainium。

否则,它仍然非常可靠,可以在

90% 的时间内返回准确的读数。

第一天
在野外尝试时

,设备就熄火了,
乔高兴地把石头放在他的推车里。

当你们两个返回
营地检查矿石时,

乔向你提出了一个提议:

他只需 200 美元就把矿石卖给你。

你知道一块
这么大的 unobtanium 很容易就值 1000 美元,

但任何其他
矿物实际上都一文不值。

你应该进行交易吗?

如果您想
自己弄清楚,请在此处暂停。

回答:3

回答:2

回答:1

直观地说,这似乎很划算。

由于检测器
大部分时间都是正确的,

你不
应该相信它的读数吗?

抱歉不行。

这就是为什么。

想象一下,
矿山正好有 1,000 块矿石。

1% 的 unobtainium 稀有度

意味着只有 10 块岩石
中含有珍贵的矿物。

所有 10 人都会启动探测器。

但是其他 990
块没有 unobtainium 的岩石呢?

好吧,其中 90%,
确切地说是 891 块岩石,

不会引爆任何东西。

但是 10%,即 99 块岩石,

尽管没有鎓金,但仍会触发探测器,

这种结果被称为误报。

为什么这很重要?

因为这意味着总共

有 109 块岩石
触发了探测器。

乔的岩石可能是其中任何一种,

从含有矿物的 10 种

到不含矿物的 99 种,

这意味着它含有 unobtainium 的可能性
是 109 种中的 10 种——大约 9%。

支付 200 美元以获得 9% 的
机会获得 1000 美元的几率并不大。

那么为什么这个结果如此出乎意料

,为什么乔的摇滚
看起来如此可靠呢?

关键是所谓
的基准利率谬误。

虽然我们专注于
探测器相对较高的精度,但

我们的直觉让我们忘记了首先考虑

到 unobtanium 的稀有程度

但由于该设备 10% 的错误率仍

高于矿物的整体发生率,因此

任何时候它发生故障的可能性仍然

大于真正的发现。

这个问题
是条件概率的一个例子。

答案既不
在于发现 unobtainium

的总体机会,也不
在于接收误报读数的总体机会。

我们在任何事情发生之前获得的这种背景信息

被称为无条件
或先验概率。

然而,我们正在寻找的是,

一旦我们知道该设备确实
返回了正读数,就有机会找到 unobtainium。

这被称为条件
概率或后验概率

,一旦通过观察缩小了可能性就确定了

许多
人对误报悖论感到困惑,

因为我们偏向
于关注特定信息

而不是更普遍的信息,

尤其是当立即做出
决定时。

虽然在许多情况
下,安全总比后悔好,但

误报可能会产生
真正的负面后果。

医学测试
中的假阳性比假阴性更可取,

但它们仍然会导致压力或
不必要的治疗。

大规模监视中的误报

可能导致无辜的人被
错误地逮捕、监禁或更糟。

对于这种情况,
您可以肯定的一件事

是 Tricky Joe 正
试图带您兜风。