Bilal Bomani Plant fuels that could power a jet

Translator: Fran Ontanaya
Reviewer: Morton Bast

What I’m going to do is,
I’m going to explain to you

an extreme green concept

that was developed
at NASA’s Glenn Research Center

in Cleveland, Ohio.

But before I do that, we have to go over

the definition of what green is,

‘cause a lot of us have a
different definition of it.

Green. The product is created through

environmentally and socially
conscious means.

There’s plenty of things that
are being called green now.

What does it actually mean?

We use three metrics to determine green.

The first metric is: Is it sustainable?

Which means, are you preserving
what you are doing for future use

or for future generations?

Is it alternative? Is it different
than what is being used today,

or does it have a lower carbon footprint

than what’s used conventionally?

And three: Is it renewable?

Does it come from Earth’s
natural replenishing resources,

such as sun, wind and water?

Now, my task at NASA is to develop

the next generation of aviation fuels.

Extreme green. Why aviation?

The field of aviation uses
more fuel than just about

every other combined. We
need to find an alternative.

Also it’s a national
aeronautics directive.

One of the national aeronautics
goals is to develop

the next generation of fuels, biofuels,

using domestic and safe,
friendly resources.

Now, combating that challenge

we have to also meet
the big three metric —

Actually, extreme green
for us is all three together;

that’s why you see the plus
there. I was told to say that.

So it has to be the big three at
GRC. That’s another metric.

Ninety-seven percent of the
world’s water is saltwater.

How about we use that?
Combine that with number three.

Do not use arable land.

Because crops are already
growing on that land

that’s very scarce around the world.

Number two: Don’t compete with food crops.

That’s already a well established
entity, they don’t need another entry.

And lastly the most precious
resource we have on this Earth

is fresh water. Don’t use fresh water.

If 97.5 percent
of the world’s water is saltwater,

2.5 percent is fresh water.
Less than a half percent

of that is accessible for human use.

But 60 percent of the population
lives within that one percent.

So, combating my problem was,
now I have to be extreme green

and meet the big three.
Ladies and gentlemen,

welcome to the GreenLab Research Facility.

This is a facility dedicated
to the next generation

of aviation fuels using halophytes.

A halophyte is a salt-tolerating plant.

Most plants don’t like salt,
but halophytes tolerate salt.

We also are using weeds

and we are also using algae.

The good thing about our lab is, we’ve had

3,600 visitors in the last two years.

Why do you think that’s so?

Because we are on to something special.

So, in the lower you see
the GreenLab obviously,

and on the right hand
side you’ll see algae.

If you are into the business
of the next generation

of aviation fuels, algae
is a viable option,

there’s a lot of funding right now,

and we have an algae to fuels program.

There’s two types of algae growing.

One is a closed photobioreactor
that you see here,

and what you see on the other
side is our species —

we are currently using a species
called Scenedesmus dimorphus.

Our job at NASA is to take the
experimental and computational

and make a better mixing for
the closed photobioreactors.

Now the problems with closed
photobioreactors are:

They are quite expensive,
they are automated,

and it’s very difficult
to get them in large scale.

So on large scale what do they use?

We use open pond systems.
Now, around the world

they are growing algae,
with this racetrack design

that you see here. Looks like an oval with

a paddle wheel and mixes really well,

but when it gets around the last turn,
which I call turn four — it’s stagnant.

We actually have a solution for that.

In the GreenLab in our open pond system

we use something that happens
in nature: waves.

We actually use wave technology
on our open pond systems.

We have 95 percent mixing
and our lipid content is higher

than a closed photobioreactor system,

which we think is significant.

There is a drawback to algae,
however: It’s very expensive.

Is there a way to produce
algae inexpensively?

And the answer is: yes.

We do the same thing
we do with halophytes,

and that is: climatic adaptation.

In our GreenLab we have
six primary ecosystems

that range from freshwater
all the way to saltwater.

What we do: We take a potential
species, we start at freshwater,

we add a little bit more salt,
when the second tank here

will be the same ecosystem as Brazil —

right next to the sugar cane
fields you can have our plants —

the next tank represents Africa,
the next tank represents Arizona,

the next tank represents Florida,

and the next tank represents
California or the open ocean.

What we are trying to do is to
come up with a single species

that can survive anywhere in the
world, where there’s barren desert.

We are being very successful so far.

Now, here’s one of the problems.

If you are a farmer, you need five things
to be successful: You need seeds,

you need soil, you need
water and you need sun,

and the last thing that you
need is fertilizer.

Most people use chemical fertilizers.
But guess what?

We do not use chemical fertilizer.

Wait a second! I just saw lots of greenery
in your GreenLab. You have to use fertilizer.

Believe it or not, in our analysis
of our saltwater ecosystems

80 percent of what we need
are in these tanks themselves.

The 20 percent that’s missing
is nitrogen and phosphorous.

We have a natural solution: fish.

No we don’t cut up the fish
and put them in there.

Fish waste is what we use.
As a matter of fact

we use freshwater mollies, that we’ve
used our climatic adaptation technique

from freshwater all the way to seawater.

Freshwater mollies: cheap,
they love to make babies,

and they love to go to the bathroom.

And the more they go to the
bathroom, the more fertilizer we get,

the better off we are, believe it or not.

It should be noted that we use
sand as our soil,

regular beach sand. Fossilized coral.

So a lot of people ask me,
“How did you get started?”

Well, we got started in what we
call the indoor biofuels lab.

It’s a seedling lab. We have 26
different species of halophytes,

and five are winners. What we do here is —

actually it should be called
a death lab, ‘cause we try to

kill the seedlings, make them rough —

and then we come to the GreenLab.

What you see in the lower corner

is a wastewater treatment plant experiment

that we are growing, a macro-algae
that I’ll talk about in a minute.

And lastly, it’s me actually working
in the lab to prove to you I do work,

I don’t just talk about what I do.

Here’s the plant species.
Salicornia virginica.

It’s a wonderful plant. I love that plant.

Everywhere we go we see it. It’s
all over the place, from Maine

all the way to California.
We love that plant.

Second is Salicornia bigelovii. Very
difficult to get around the world.

It is the highest lipid
content that we have,

but it has a shortcoming: It’s short.

Now you take europaea, which is the
largest or the tallest plant that we have.

And what we are trying to do

with natural selection or adaptive
biology — combine all three

to make a high-growth, high-lipid plant.

Next, when a hurricane decimated the
Delaware Bay — soybean fields gone —

we came up with an idea:
Can you have a plant

that has a land reclamation positive
in Delaware? And the answer is yes.

It’s called seashore mallow.
Kosteletzkya virginica —

say that five times fast if you can.

This is a 100 percent usable plant. The
seeds: biofuels. The rest: cattle feed.

It’s there for 10 years;
it’s working very well.

Now we get to Chaetomorpha.

This is a macro-algae that loves

excess nutrients. If you
are in the aquarium industry

you know we use it
to clean up dirty tanks.

This species is so significant to us.

The properties are very close to plastic.

We are trying right now to convert
this macro-algae into a bioplastic.

If we are successful, we will
revolutionize the plastics industry.

So, we have a seed to fuel program.

We have to do something with
this biomass that we have.

And so we do G.C. extraction, lipid
optimization, so on and so forth,

because our goal really is to come up with

the next generation of aviation fuels,
aviation specifics, so on and so forth.

So far we talked about water and fuel,

but along the way we found out
something interesting about Salicornia:

It’s a food product.

So we talk about ideas
worth spreading, right?

How about this: In sub-Saharan
Africa, next to the sea, saltwater,

barren desert,
how about we take that plant,

plant it, half use for food,
half use for fuel.

We can make that happen, inexpensively.

You can see
there’s a greenhouse in Germany

that sells it as a health food product.

This is harvested, and in the middle here
is a shrimp dish, and it’s being pickled.

So I have to tell you a joke.
Salicornia is known as sea beans,

saltwater asparagus and pickle weed.

So we are pickling pickle
weed in the middle.

Oh, I thought it was funny. (Laughter)

And at the bottom is seaman’s mustard.
It does make sense,

this is a logical snack. You have mustard,

you are a seaman, you see the
halophyte, you mix it together,

it’s a great snack with some crackers.

And last, garlic with Salicornia,
which is what I like.

So, water, fuel and food.

None of this is possible
without the GreenLab team.

Just like the Miami Heat has the big
three, we have the big three at NASA GRC.

That’s myself, professor Bob Hendricks,
our fearless leader, and Dr. Arnon Chait.

The backbone of the GreenLab is students.

Over the last two years
we’ve had 35 different students

from around the world working at GreenLab.

As a matter fact my division chief says
a lot, “You have a green university.”

I say, “I’m okay with that,
‘cause we are nurturing

the next generation of extreme
green thinkers, which is significant.”

So, in first summary I presented
to you what we think

is a global solution
for food, fuel and water.

There’s something missing to be complete.

Clearly we use electricity.
We have a solution for you —

We’re using clean energy sources here.

So, we have two wind turbines
connected to the GreenLab,

we have four or five more
hopefully coming soon.

We are also using something
that is quite interesting —

there is a solar array field at
NASA’s Glenn Research Center,

hasn’t been used for 15 years.

Along with some of my electrical
engineering colleagues,

we realized that they are still viable,

so we are refurbishing them right now.

In about 30 days or so they’ll be
connected to the GreenLab.

And the reason why you see
red, red and yellow, is

a lot of people think NASA employees
don’t work on Saturday —

This is a picture taken on Saturday.

There are no cars around, but you see my truck
in yellow. I work on Saturday. (Laughter)

This is a proof to you that I’m working.

‘Cause we do what it takes to get the
job done, most people know that.

Here’s a concept with this:

We are using the GreenLab
for a micro-grid test bed

for the smart grid concept in Ohio.

We have the ability to do that,
and I think it’s going to work.

So, GreenLab Research Facility.

A self-sustainable renewable energy
ecosystem was presented today.

We really, really hope this
concept catches on worldwide.

We think we have a solution for food,
water, fuel and now energy. Complete.

It’s extreme green, it’s sustainable,
alternative and renewable

and it meets the big three at GRC:

Don’t use arable land, don’t
compete with food crops,

and most of all, don’t use fresh water.

So I get a lot of questions about,
“What are you doing in that lab?”

And I usually say, “None of your business,
that’s what I’m doing in the lab.” (Laughter)

And believe it or not, my number one goal

for working on this project is

I want to help save the world.

译者:Fran Ontanaya
审稿人:Morton Bast

我要做的是,
我要向你解释

一个极端的绿色概念

,它是在俄亥俄州克利夫兰的
NASA 格伦研究中心开发的

但在我这样做之前,我们必须

重新定义绿色是什么

,因为我们很多人对它有
不同的定义。

绿。 该产品是通过具有

环境和社会
意识的方式创造的。

现在有很多东西
被称为绿色。

它实际上是什么意思?

我们使用三个指标来确定绿色。

第一个指标是:它是否可持续?

这意味着,您是否保留
了您正在做的事情以供将来使用

或后代使用?

是替代品吗? 它与
今天使用的不同,

还是

比传统使用的碳足迹更低?

第三:它是可再生的吗?

它是否来自地球的
自然补充资源,

例如太阳、风和水?

现在,我在 NASA 的任务是

开发下一代航空燃料。

极绿。 为什么是航空?

航空领域使用
的燃料几乎

比其他所有领域的总和还要多。 我们
需要找到替代方案。

这也是一项国家
航空指令。

国家航空的
目标之一是

利用国内安全、
友好的资源开发下一代燃料、生物燃料。

现在,应对这一挑战,

我们还必须
满足三大指标——

实际上,
对我们来说,极端绿色是三者结合在一起;

这就是为什么你在那里看到加号的原因
。 我被告知要这么说。

所以它必须是
GRC 的三巨头。 这是另一个指标。

世界上 97% 的水是咸水。

我们用那个怎么样?
将其与第三个结合起来。

不要使用耕地。

因为庄稼已经
在这片

世界上非常稀缺的土地上生长。

第二:不要与粮食作物竞争。

这已经是一个完善的
实体,他们不需要另一个条目。

最后,
我们在地球上拥有的最宝贵的资源

是淡水。 不要使用淡水。

如果
世界上 97.5% 的水是咸水,那么

2.5% 是淡水。
其中只有不到 0.5

% 可供人类使用。

但 60% 的人口
生活在这 1% 以内。

所以,与我的问题作斗争的是,
现在我必须非常环保

并遇到三巨头。
女士们,先生们,

欢迎来到 GreenLab 研究中心。

这是一个专门
用于

使用盐生植物的下一代航空燃料的设施。

盐生植物是一种耐盐植物。

大多数植物不喜欢盐,
但盐生植物耐受盐。

我们也在使用杂草

,我们也在使用藻类。

我们实验室的好处是,

在过去的两年里,我们接待了 3,600 名访客。

为什么你认为会这样?

因为我们正在做一些特别的事情。

因此,在下方您可以
明显看到 GreenLab,

而在
右侧您会看到藻类。

如果您从事

下一代航空燃料的业务,藻类
是一个可行的选择,

现在有很多资金

,我们有一个藻类燃料计划。

有两种藻类生长。

一个是你在这里看到的封闭式光生物反应器

,你在另一边看到的
是我们的物种——

我们目前正在使用一种
叫做二形栅藻的物种。

我们在 NASA 的工作是进行
实验和计算,


为封闭的光生物反应器进行更好的混合。

现在封闭式
光生物反应器的问题是:

它们非常昂贵,
它们是自动化的,

而且
很难大规模生产。

那么他们大规模使用什么?

我们使用开放式池塘系统。
现在,

他们正在世界各地种植藻类,
正如

您在这里看到的这种跑道设计。 看起来像一个带有桨轮的椭圆形,

并且混合得非常好,

但是当它绕过最后一个转弯时
,我称之为第四个转弯 - 它是停滞的。

我们实际上有一个解决方案。

在我们开放式池塘系统的 GreenLab 中,

我们使用自然界中发生的事物
:波浪。

我们实际上
在开放式池塘系统上使用波浪技术。

我们有 95% 的混合
,我们的脂质含量

高于封闭的光生物反应器系统

,我们认为这很重要。 然而

,藻类有一个缺点
:它非常昂贵。

有没有办法廉价地生产
藻类?

答案是:是的。

我们对盐生植物做同样的事情

,那就是:气候适应。

在我们的 GreenLab 中,我们有
六个主要生态系统

,从淡水
一直到咸水。

我们做什么:我们选择一个潜在的
物种,我们从淡水开始,

我们添加一点盐,
当这里的第二个水箱

将是与巴西相同的生态系统时——

就在甘蔗田旁边,
你可以种植我们的植物

—— 下一个坦克代表非洲
,下一个坦克代表亚利桑那

,下一个坦克代表佛罗里达

,下一个坦克代表
加利福尼亚或公海。

我们正在努力做的是
想出一种

可以在世界任何地方生存的单一物种
,那里有贫瘠的沙漠。

到目前为止,我们非常成功。

现在,这是问题之一。

如果你是一个农民,你需要五样东西
才能成功:你需要种子、

你需要土壤、你需要
水和你需要阳光,

而你最
不需要的就是肥料。

大多数人使用化学肥料。
但猜猜怎么了?

我们不使用化肥。

等一等! 我刚刚
在你的 GreenLab 看到了很多绿色植物。 你必须使用肥料。

信不信由你,在我们对
咸水生态系统的分析中,

我们需要的 80%
都在这些水箱中。

缺少的 20%
是氮和磷。

我们有一个自然的解决方案:鱼。

不,我们不会把鱼切碎
放进去。

鱼粪是我们使用的。
事实上,

我们使用淡水 mollies,我们
使用了

从淡水到海水的气候适应技术。

淡水鼹鼠:便宜
,喜欢生孩子

,喜欢上厕所。

他们上
厕所的次数越多,我们得到的肥料越多,我们的生活就

越好,信不信由你。

需要注意的是,我们使用
沙子作为我们的土壤,

普通的海滩沙子。 化石珊瑚。

所以很多人问我,
“你是怎么开始的?”

好吧,我们开始了我们
所说的室内生物燃料实验室。

这是一个幼苗实验室。 我们有 26
种不同的盐生植物,

其中 5 种是获胜者。 我们在这里所做的是——

实际上它应该被
称为死亡实验室,因为我们试图

杀死幼苗,使它们变得粗糙——

然后我们来到绿色实验室。

你在下角看到的

是我们正在种植的污水处理厂实验

,一种大型藻类
,我稍后会谈到。

最后,实际上是我
在实验室工作,以向你证明我确实在工作,

我不只是谈论我所做的事情。

这是植物种类。
盐角草。

这是一种奇妙的植物。 我喜欢那种植物。

无论我们走到哪里,我们都会看到它。
从缅因州一直到加利福尼亚州,到处

都是。
我们喜欢那种植物。

其次是盐角草。
环游世界非常困难。

它是我们拥有的最高脂质
含量,

但它有一个缺点:它很短。

现在你拿 europaea,它
是我们拥有的最大或最高的植物。

而我们正在尝试

用自然选择或适应性
生物学做的事情——将这三者结合

起来,制造出一种高生长、高脂的植物。

接下来,当一场飓风摧毁了
特拉华湾——大豆田消失了——

我们想出了一个主意:
你能在特拉华州

种植一种土地复垦积极的植物
吗? 答案是肯定的。

它被称为海滨锦葵。
Kosteletzkya virginica -

如果可以的话,说快五倍。

这是一个 100% 可用的植物。
种子:生物燃料。 其余:牛饲料。

它已经存在了 10 年;
它工作得很好。

现在我们来看看Chaetomorpha。

这是一种喜欢营养过剩的大型藻类

。 如果
您从事水族行业,

您就知道我们用它
来清理脏水箱。

这个物种对我们来说非常重要。

性能非常接近塑料。

我们现在正在尝试将
这种大型藻类转化为生物塑料。

如果我们成功,我们将
彻底改变塑料行业。

所以,我们有一个种子来推动计划。

我们必须对我们拥有的
这种生物质做点什么。

所以我们做 G.C. 提取,脂质
优化等等,

因为我们的目标确实是

想出下一代航空燃料,
航空细节等等。

到目前为止,我们讨论了水和燃料,

但在此过程中我们发现
了盐角草的一些有趣之处:

它是一种食品。

所以我们谈论
值得传播的想法,对吧?

这个怎么样:在撒哈拉以南的
非洲,靠近大海,咸水,

贫瘠的沙漠,
我们把那棵

植物种起来怎么样,一半用作食物,
一半用作燃料。

我们可以以低廉的价格实现这一目标。

你可以看到
德国有一个温室

,把它作为保健食品出售。

这是收获的,中间
是一道虾菜,正在腌制。

所以我得给你讲个笑话。
盐角草被称为海豆、

咸水芦笋和泡菜。

所以我们
在中间腌制泡菜。

哦,我觉得很好笑。 (笑声

) 底部是海员芥末。
确实有道理,

这是一种合乎逻辑的小吃。 你有芥末,

你是一名海员,你看到了
盐生植物,你把它混合在一起,

它是一种很棒的小吃和一些饼干。

最后,大蒜和盐角,
这是我喜欢的。

所以,水,燃料和食物。

如果没有 GreenLab 团队,这一切都是不可能
的。

就像迈阿密热火队拥有三巨头一样
,我们在 NASA GRC 拥有三巨头。

那就是我自己,鲍勃·亨德里克斯教授,
我们无畏的领袖,还有阿农·柴特博士。

GreenLab 的骨干是学生。

在过去的两年里,
我们有来自世界各地的 35 名不同的学生

在 GreenLab 工作。

事实上,我的处长说
了很多,“你有一所绿色大学。”

我说,“我同意
,因为我们正在

培养下一代极端
绿色思想家,这很重要。”

因此,在第一个摘要中,我
向您介绍了我们

认为的全球
食品、燃料和水解决方案。

缺少一些东西是完整的。

显然我们用电。
我们为您提供解决方案——

我们在这里使用清洁能源。

因此,我们有两台风力涡轮机
连接到 GreenLab,

我们
希望很快还会有四五台。

我们还使用了
一些非常有趣的东西——美国宇航局格伦研究中心

有一个太阳能阵列场

已经 15 年没有使用了。

与我的一些电气
工程同事一起,

我们意识到它们仍然可行,

因此我们现在正在对其进行翻新。

大约 30 天左右后,他们将
连接到 GreenLab。

之所以看到
红色、红色和黄色,

是因为很多人认为 NASA 员工
周六不工作——

这是周六拍摄的照片。

周围没有汽车,但你看到我的卡车
是黄色的。 我周六上班。 (笑声)

这是向你证明我在工作的证据。

因为我们尽其所能
完成工作,大多数人都知道这一点。

这里有一个概念:

我们正在使用 GreenLab
作为

俄亥俄州智能电网概念的微电网试验台。

我们有能力做到这一点
,我认为它会奏效。

所以,GreenLab 研究机构。 今天介绍了

一个自我可持续的可再生能源
生态系统。

我们真的,真的希望这个
概念能在全世界流行起来。

我们认为我们已经找到了食物、
水、燃料和现在能源的解决方案。 完全的。

它非常绿色,可持续、
替代和可再生

,符合 GRC 的三大原则:

不使用耕地,不
与粮食作物竞争

,最重要的是,不使用淡水。

所以我收到了很多关于
“你在那个实验室做什么?”的问题。

我通常会说,“不关你
的事,这就是我在实验室里做的事情。” (笑声)

不管你信不信,我

从事这个项目的首要目标

是帮助拯救世界。