Could we harness the power of a black hole Fabio Pacucci

Imagine a distant future when humans
reach beyond our pale blue dot,

forge cities on planets
thousands of light-years away,

and maintain a galactic web
of trade and transport.

What would it take for our civilization
to make that leap?

There are many things to consider—
how would we communicate?

What might a galactic government
look like?

And one of the most fundamental
of all:

where would we get enough energy
to power that civilization—

its industry, its terraforming operations,
and its starships?

An astronomer named Nikolai Kardashev
proposed a scale

to quantify an evolving civilization’s
increasing energy needs.

In the first evolutionary stage,
which we’re currently in,

planet-based fuel sources
like fossil fuels,

solar panels and nuclear power plants

are probably enough to settle other
planets inside our own solar system,

but not much beyond that.

For a civilization on the third
and final stage,

expansion on a galactic scale
would require about 100 billion times

more energy than the full 385 yotta joules
our sun releases every second.

Barring a breakthrough in exotic physics,

there’s only one energy source
that could suffice:

a supermassive black hole.

It’s counterintuitive to think
of black holes as energy sources,

but that’s exactly what they are,
thanks to their accretion disks:

circular, flat structures formed
by matter falling into the event horizon.

Because of conservation
of angular momentum,

particles there don’t just plummet
straight into the black hole.

Instead, they slowly spiral.

Due to the intense gravitational field
of the black hole,

these particles convert their potential
energy to kinetic energy

as they inch closer to the event horizon.

Particle interactions allow
for this kinetic energy

to be radiated out into space

at an astonishing matter-to-energy
efficiency:

6% for non-rotating black holes,
and up to 32% for rotating ones.

This drastically outshines
nuclear fission,

currently the most efficient
widely available mechanism

to extract energy from mass.

Fission converts just 0.08%
of a Uranium atom into energy.

The key to harnessing this power
may lie in a structure

devised by physicist Freeman Dyson,
known as the Dyson sphere.

In the 1960s, Dyson proposed
that an advanced planetary civilization

could engineer an artificial sphere
around their main star,

capturing all of its radiated energy
to satisfy their needs.

A similar, though vastly
more complicated design

could theoretically be applied
to black holes.

In order to produce energy,
black holes need to be continuously fed—

so we wouldn’t want to fully cover
it with a sphere.

Even if we did, the plasma jets
that shoot from the poles

of many supermassive black holes

would blow any structure
in their way to smithereens.

So instead, we might design
a sort of Dyson ring,

made of massive,
remotely controlled collectors.

They’d swarm in an orbit
around a black hole,

perhaps on the plane
of its accretion disk, but farther out.

These devices could use
mirror-like panels

to transmit the collected energy
to a powerplant,

or a battery for storage.

We’d need to ensure that these collectors
are built at just the right radius:

too close and they’d melt
from the radiated energy.

Too far, and they’d only collect
a tiny fraction of the available energy

and might be disrupted by stars orbiting
the black hole.

We would likely need several Earths
worth of highly reflective material

like hematite to construct
the full system—

plus a few more dismantled planets
to make a legion of construction robots.

Once built, the Dyson ring
would be a technological masterpiece,

powering a civilization spread
across every arm of a galaxy.

This all may seem like wild speculation.

But even now,
in our current energy crisis,

we’re confronted
by the limited resources of our planet.

New ways of sustainable energy
production will always be needed,

especially as humanity works
towards the survival

and technological progress of our species.

Perhaps there’s already a civilization
out there

that has conquered
these astronomical giants.

We may even be able to tell

by seeing the light
from their black hole periodically dim

as pieces of the Dyson ring pass
between us and them.

Or maybe these superstructures are fated
to remain in the realm of theory.

Only time— and our scientific ingenuity—
will tell.

想象一个遥远的未来,当人类
超越我们的淡蓝色圆点,

在数千光年外的行星上建立城市

并维持一个银河
贸易和运输网络。

我们的文明
需要什么才能实现这一飞跃?

有很多事情需要考虑——
我们将如何沟通?

银河政府
会是什么样子?


根本的问题之一是:

我们从哪里获得足够的能量
来为这个文明提供动力——

它的工业、地球化操作
和星际飞船?

一位名叫 Nikolai Kardashev 的天文学家
提出了一个量表

来量化不断发展的文明
不断增长的能源需求。

在我们目前所处的第一个进化阶段
,以

行星为基础的燃料来源,
如化石燃料、

太阳能电池板和

核电站,可能足以
在我们自己的太阳系内定居

其他行星,但仅此而已。

对于处于第三
阶段和最后阶段的文明来说,

银河规模的扩张
需要的

能量是太阳每秒释放的全部 385 约塔焦耳能量的 1000 亿倍

除非在奇异物理学方面取得突破,

否则只有一种
能源可以满足需求

:超大质量黑洞。

将黑洞视为能源是违反直觉的

但这正是它们
的本质,这要归功于它们的吸积盘:

由落入事件视界的物质形成的圆形扁平结构。

由于
角动量守恒,

那里的粒子不会
直接坠入黑洞。

相反,它们慢慢地盘旋。

由于黑洞强大的引力
场,

这些粒子在

靠近事件视界时将其势能转化为动能。

粒子相互作用
允许这种动能

以惊人的物质-能量
效率辐射到太空:

非旋转黑洞为 6%,旋转
黑洞高达 32%。

这大大超过了
核裂变,这是

目前从质量中提取能量的最有效的
广泛可用的机制

裂变仅将 0.08
% 的铀原子转化为能量。

利用这种力量的关键
可能

在于物理学家弗里曼戴森设计的一种结构,
称为戴森球。

在 1960 年代,戴森提
出先进的行星文明

可以
在其主星周围设计一个人造球体,

捕获其所有辐射能量
以满足他们的需求。

理论上,类似的,虽然
要复杂得多的设计

可以
应用于黑洞。

为了产生能量,
黑洞需要不断地被喂食——

所以我们不想用球体完全覆盖
它。

即使我们这样做了,
从许多超大质量黑洞的两极射出的等离子射流

也会将
其途中的任何结构吹成碎片。

因此,我们可能会设计
一种戴森戒指,

由大型
遥控收集器制成。

它们会聚集在一个围绕黑洞的轨道上

可能在
它的吸积盘平面上,但更远。

这些设备可以使用
类似镜子的

面板将收集到的能量传输
到动力装置

或用于存储的电池。

我们需要确保这些收集
器建在正确的半径上:

太近了,它们会
被辐射能量融化。

太远了,它们只会收集
一小部分可用能量,

并且可能会被围绕黑洞运行的恒星破坏

我们可能需要几个地球
价值的高反射材料(

如赤铁矿)来
建造整个系统——

再加上更多拆除的行星
来制造一支建筑机器人军团。

一旦建成,戴森环
将成为一项技术杰作,


遍布银河系每一个臂部的文明提供动力。

这一切似乎都是疯狂的猜测。

但即使是现在,
在我们当前的能源危机中,

我们也面临
着地球上有限的资源。 将始终需要

新的可持续能源
生产方式,

尤其是当人类致力于

我们物种的生存和技术进步时。

也许已经有一个文明

征服了
这些天文巨人。

当戴森环的碎片
在我们和他们之间经过时,我们甚至可以通过看到来自他们黑洞的光周期性地变暗来判断。

或者也许这些上层建筑注定
要停留在理论领域。

只有时间——以及我们的科学创造力——
会证明一切。