How were harnessing natures hidden superpowers Oded Shoseyov

Two hundred years of modern science.

We have to admit

that our performance is not great.

The machines we build continue
to suffer from mechanical failures.

The houses we build
do not survive severe earthquakes.

But we shouldn’t be so critical
of our scientists for a simple reason:

they didn’t have much time.

Two hundred years is not a lot of time,

while nature had three billion years

to perfect some of the most
amazing materials,

that we wish we had in our possession.

Remember, these materials
carry a quality assurance

of three billion years.

Take, for example, sequoia trees.

They carry hundreds of tons
for hundreds of years

in cold weather, in warm climates,

UV light.

Yet, if you look at the structure
by high-resolution electron microscopy,

and you ask yourself, what is it made of,

surprisingly, it’s made of sugar.

Well, not exactly as we drink in our tea.

It’s actually a nanofiber
called nanocrystalline cellulose.

And this nanocrystalline cellulose
is so strong, on a weight basis,

it’s about 10 times stronger than steel.

Yet it’s made of sugar.

So scientists all over the world
believe that nanocellulose

is going to be one of the most important
materials for the entire industry.

But here’s the problem:

say you want to buy
a half a ton of nanocellulose

to build a boat or an airplane.

Well, you can Google, you can eBay,
you can even Alibaba.

You won’t find it.

Of course, you’re going to find
thousands of scientific papers –

great papers, where scientists
are going to say this is a great material,

there are lots of things
we can do with it.

But no commercial source.

So we at the Hebrew University,
together with our partners in Sweden,

decided to focus on the development
of an industrial-scale process

to produce this nanocellulose.

And, of course,
we didn’t want to cut trees.

So we were looking for another source

of raw material,

and we found one – in fact,
the sludge of the paper industry.

The reason: there is a lot of it.

Europe alone produces 11 million tons

of that material annually.

It’s the equivalent of a mountain
three kilometers high,

sitting on a soccer field.

And we produce this mountain every year.

So for everybody,
it’s an environmental problem,

and for us, it’s a gold mine.

So now, we are actually producing,
on an industrial scale in Israel,

nanocellulose, and very soon, in Sweden.

We can do a lot of things
with the material.

For example,

we have shown that by adding
only a small percent of nanocellulose

into cotton fibers, the same
as my shirt is made of,

it increases its strength dramatically.

So this can be used
for making amazing things,

like super-fabrics for industrial
and medical applications.

But this is not the only thing.

For example, self-standing,
self-supporting structures,

like the shelters that you can see now,

actually are now showcasing
in the Venice Biennale for Architecture.

Nature actually didn’t stop its wonders

in the plant kingdom.

Think about insects.

Cat fleas, for example,

have the ability to jump
about a hundred times their height.

That’s amazing.

It’s the equivalent of a person

standing in the middle
of Liberty Island in New York,

and in a single jump,

going to the top of the Statue of Liberty.

I’m sure everybody would like to do that.

So the question is:

How do cat fleas do it?

It turns out, they make
this wonderful material,

which is called resilin.

In simple words, resilin,
which is a protein,

is the most elastic rubber on Earth.

You can stretch it,

you can squish it,

and it doesn’t lose almost any energy
to the environment.

When you release it – snap!

It brings back all the energy.

So I’m sure everybody
would like to have that material.

But here’s the problem:

to catch cat fleas is difficult.

(Laughter)

Why? Because they are jumpy.

(Laughter)

But now, it’s actually
enough to catch one.

Now we can extract its DNA

and read how cat fleas make the resilin,

and clone it into a less-jumpy
organism like a plant.

So that’s exactly what we did.

Now we have the ability
to produce lots of resilin.

Well, my team decided to do something
really cool at the university.

They decided to combine

the strongest material
produced by the plant kingdom

with the most elastic material
produced by the insect kingdom –

nanocellulose with resilin.

And the result is amazing.

This material, in fact, is tough,
elastic and transparent.

So there are lots of things
that can be done with this material.

For example, next-generation sport shoes,

so we can jump higher, run faster.

And even touch screens
for computers and smartphones,

that won’t break.

Well, the problem is,
we continue to implant

synthetic implants in our body,

which we glue and screw into our body.

And I’m going to say
that this is not a good idea.

Why? Because they fail.

This synthetic material fails,

just like this plastic fork,

that is not strong enough
for its performance.

But sometimes they are too strong,

and therefore their mechanical
properties do not really fit

their surrounding tissues.

But in fact, the reason
is much more fundamental.

The reason is that in nature,

there is no one there

that actually takes my head
and screws it onto my neck,

or takes my skin
and glues it onto my body.

In nature, everything is self-assembled.

So every living cell,

whether coming from a plant,
insect or human being,

has a DNA that encodes
for nanobio building blocks.

Many times they are proteins.

Other times, they are enzymes
that make other materials,

like polysaccharides, fatty acids.

And the common feature
about all these materials

is that they need no one.

They recognize each other
and self-assemble

into structures – scaffolds
on which cells are proliferating

to give tissues.

They develop into organs,
and together bring life.

So we at the Hebrew University,
about 10 years ago, decided to focus

on probably the most important
biomaterial for humans,

which is collagen.

Why collagen?

Because collagen accounts for
about 25 percent of our dry weight.

We have nothing more than collagen,
other than water, in our body.

So I always like to say,

anyone who is in the replacement
parts of human beings

would like to have collagen.

Admittedly, before we started our project,

there were already more
than 1,000 medical implants

made of collagen.

You know, simple things like
dermal fillers to reduce wrinkles,

augment lips,

and other, more sophisticated
medical implants, like heart valves.

So where is the problem?

Well, the problem is the source.

The source of all that collagen

is actually coming from dead bodies:

dead pigs, dead cows

and even human cadavers.

So safety is a big issue.

But it’s not the only one.

Also, the quality.

Now here, I have a personal interest.

This is my father, Zvi,
in our winery in Israel.

A heart valve, very similar
to the one that I showed you before,

seven years ago,
was implanted in his body.

Now, the scientific literature says
that these heart valves start to fail

10 years after the operation.

No wonder:

they are made from old, used tissues,

just like this wall made of bricks
that is falling apart.

Yeah, of course, I can take
those bricks and build a new wall.

But it’s not going to be the same.

So the US Food and Drug Administration

made a notice already in 2007,

asking the companies to start to look
for better alternatives.

So that’s exactly what we did.

We decided to clone all the five
human genes responsible

for making type I collagen in humans

into a transgenic tobacco plant.

So now, the plant has the ability
to make human collagen brand new,

untouched.

This is amazing.

Actually, it’s happening now.

Today in Israel, we grow it
in 25,000 square meters of greenhouses

all over the country.

The farmers receive
small plantlets of tobacco.

It looks exactly like regular tobacco,

except that they have five human genes.

They’re responsible for making
type I collagen.

We grow them for about 50 to 70 days,

we harvest the leaves,

and then the leaves are transported
by cooling trucks to the factory.

There, the process of extracting
the collagen starts.

Now, if you ever made a pesto –
essentially, the same thing.

(Laughter)

You crush the leaves, you get
the juice that contains the collagen.

We concentrate the protein,

transfer the protein to clean rooms
for the final purification,

and the end result is a collagen
identical to what we have in our body –

untouched, brand new

and from which we make
different medical implants:

bone void fillers, for example,

for severe bone fractures, spinal fusion.

And more recently, even,

we’ve been able to launch
into the market here in Europe

a flowable gel that is used
for diabetic foot ulcers,

that is now approved
for use in the clinic.

This is not science fiction.

This is happening now.

We are using plants
to make medical implants

for replacement parts for human beings.

In fact, more recently,
we’ve been able to make collagen fibers

which are six times stronger
than the Achilles tendon.

That’s amazing.

Together with our partners from Ireland,

we thought about the next thing:

adding resilin to those fibers.

By doing that,

we’ve been able to make a superfiber

which is about 380 percent tougher,

and 300 percent more elastic.

So oddly enough, in the future,

when a patient is transplanted
with artificial tendons or ligaments

made from these fibers,

we’ll have better performance
after the surgery

than we had before the injury.

So what’s for the future?

In the future, we believe
we’ll be able to make

many nanobio building blocks
that nature provided for us –

collagen, nanocellulose,
resilin and many more.

And that will enable us to make
better machines perform better,

even the heart.

Now, this heart
is not going to be the same

as we can get from a donor.

It will be better.

It actually will perform better

and will last longer.

My friend Zion Suliman once told me

a smart sentence.

He said, “If you want a new idea,

you should open an old book.”

And I’m going to say
that the book was written.

It was written over three billion years

of evolution.

And the text is the DNA of life.

All we have to do

is read this text,

embrace nature’s gift to us

and start our progress from here.

Thank you.

(Applause)

两百年的现代科学。

我们不得不

承认我们的表现并不出色。

我们制造的机器
继续遭受机械故障的困扰。

我们建造的房屋
经不起剧烈地震。

但我们不应该
因为一个简单的原因对我们的科学家如此批评:

他们没有太多时间。

200 年不是很多时间,

而大自然有 30 亿年的时间

来完善一些我们希望拥有的最
神奇的材料

请记住,这些材料

具有 30 亿年的质量保证。

以红杉树为例。

它们

在寒冷的天气、温暖的气候和

紫外线下携带数百吨数百年。

然而,如果你
用高分辨率电子显微镜观察结构,

然后问自己,它是由什么制成的,

令人惊讶的是,它是由糖制成的。

嗯,不完全像我们在茶里喝的那样。

它实际上是一种
称为纳米晶纤维素的纳米纤维。

而且这种纳米晶纤维素
非常坚固,按重量计算,

它的强度大约是钢的 10 倍。

然而它是由糖制成的。

因此,全世界的科学家都
认为,纳米纤维素

将成为整个行业最重要的
材料之一。

但问题是:

假设你想
购买半吨纳米纤维素

来建造一艘船或一架飞机。

好吧,你可以谷歌,你可以 eBay,
你甚至可以阿里巴巴。

你不会找到它。

当然,你会找到
数以千计的科学论文——

伟大的论文,科学家
们会说这是一种很棒的材料,

我们可以用它做很多事情。

但没有商业来源。

因此,我们在希伯来大学
与我们在瑞典的合作伙伴一起,

决定专注于
开发一种工业规模的工艺

来生产这种纳米纤维素。

而且,当然,
我们不想砍树。

所以我们一直在寻找另一种

原材料来源

,我们找到了一种——实际上
是造纸工业的污泥。

原因:有很多。

仅欧洲每年就生产 1100

万吨这种材料。

它相当于一座
三公里高的山,

坐落在一个足球场上。

我们每年都会生产这座山。

所以对每个人来说,
这是一个环境问题

,对我们来说,这是一座金矿。

所以现在,我们实际上
正在以色列以工业规模生产

纳米纤维素,很快就会在瑞典生产。

我们可以用材料做很多事情

例如,

我们已经证明,通过在棉纤维中
添加一小部分纳米

纤维素,
就像我的衬衫一样,

它可以显着增加它的强度。

所以这可以
用来制造令人惊奇的东西,

比如用于工业
和医疗应用的超级面料。

但这不是唯一的事情。

例如,自立式、
自支撑结构,

如您现在看到的避难所,

实际上现在
正在威尼斯建筑双年展上展出。

大自然实际上并没有停止它

在植物界的奇迹。

想想昆虫。

例如,猫跳蚤

能够跳跃
大约一百倍的高度。

太棒了。

相当于一个人

站在纽约自由岛的中央

,一跳,

就到了自由女神像的顶端。

我相信每个人都愿意这样做。

那么问题来了:

猫跳蚤是怎么做到的?

事实证明,他们制造了
这种奇妙的材料

,称为树脂。

简单来说,
resilin 是一种蛋白质,

是地球上最具弹性的橡胶。

你可以拉伸它,

你可以挤压它,

而且它几乎不会对环境失去任何能量

当你释放它时——啪!

它带回了所有的能量。

所以我相信每个
人都想拥有这种材料。

但问题是

:捕捉猫跳蚤很困难。

(笑声)

为什么? 因为他们很紧张。

(笑声)

但现在,
抓一只就够了。

现在我们可以提取它的 DNA

并了解猫跳蚤如何制造弹性蛋白,

并将其克隆到像植物这样不那么跳跃的
有机体中。

这正是我们所做的。

现在我们有
能力生产大量的resilin。

好吧,我的团队决定在大学做一些
非常酷的事情。

他们决定将植物界生产

的最强材料

与昆虫界生产的最具弹性的材料
——

纳米纤维素和树脂结合起来。

结果是惊人的。

事实上,这种材料坚韧、有
弹性和透明。

所以
用这种材料可以做很多事情。

比如下一代运动鞋,

这样我们可以跳得更高,跑得更快。

甚至
电脑和智能手机的触摸屏

也不会坏。

好吧,问题是,
我们继续

在我们的身体中植入合成植入物,我们将

它们粘合并拧入我们的身体。

我要说
这不是一个好主意。

为什么? 因为他们失败了。

这种合成材料失败了,

就像这个塑料叉子一样,

它的强度不足以发挥
其性能。

但有时它们太强了

,因此它们的机械
性能并不真正

适合周围的组织。

但实际上,
原因更为根本。

原因是,在自然界中,

没有

人真正把我的
头拧到我的脖子上,

或者把我的
皮肤粘在我的身上。

在自然界中,一切都是自组装的。

因此,每一个活细胞,

无论是来自植物、
昆虫还是人类,

都具有
编码纳米生物构件的 DNA。

很多时候它们是蛋白质。

其他时候,它们是
制造其他材料的酶,

如多糖、脂肪酸。

所有这些材料的共同特点

是它们不需要任何人。

它们相互识别
并自组装

成结构——
细胞在其上增殖

以提供组织的支架。

它们发育成器官,
并共同带来生命。

因此,
大约 10 年前,希伯来大学的我们决定专注

于可能对人类最重要的
生物材料,

即胶原蛋白。

为什么是胶原蛋白?

因为胶原蛋白
约占我们干重的 25%。

我们的身体里除了水以外,只有胶原蛋白。

所以我总是喜欢说,

任何在人类替代
部位的

人都想拥有胶原蛋白。

诚然,在我们开始我们的项目之前,

已经有
1000 多个

由胶原蛋白制成的医疗植入物。

你知道,像皮肤填充剂这样简单的东西
可以减少皱纹、

增加嘴唇,

以及其他更复杂的
医疗植入物,比如心脏瓣膜。

那么问题出在哪里?

嗯,问题出在源头上。

所有胶原蛋白的来源

实际上来自尸体:

死猪、死牛

甚至人类尸体。

所以安全是个大问题。

但这不是唯一的。

还有,质量。

现在在这里,我有个人兴趣。

这是我父亲 Zvi,
在我们以色列的酒厂里。

一个心脏瓣膜,与
我在七年前向您展示的那个非常相似


被植入他的体内。

现在,科学文献
说这些心脏瓣膜

在手术 10 年后开始失效。

难怪:

它们是用旧的、用过的纸巾

制成的,就像这面砖砌成的墙
正在倒塌一样。

是的,当然,我可以拿
这些砖块建一堵新墙。

但它不会是一样的。

所以美国食品和药物管理局

早在 2007 年就发出通知,

要求这些公司开始
寻找更好的替代品。

这正是我们所做的。

我们决定将

负责在人体中制造 I 型胶原蛋白的所有五个人类基因克隆

到转基因烟草植物中。

所以现在,这种植物有
能力使人体胶原蛋白焕然一新,

原封未动。

这真太了不起了。

事实上,它现在正在发生。

今天在以色列,我们
在全国 25,000 平方米的温室中种植它

农民收到
小株烟草。

它看起来和普通烟草一模一样,

只是它们有五个人类基因。

他们负责制造
I 型胶原蛋白。

我们种植它们大约 50 到 70 天,

我们收获叶子,

然后
用冷却卡车将叶子运送到工厂。

在那里,
开始提取胶原蛋白的过程。

现在,如果你曾经做过香蒜酱——
本质上是一样的。

(笑声)

你把叶子压碎,你就得到
了含有胶原蛋白的汁液。

我们浓缩蛋白质,

将蛋白质转移到洁净室
进行最终纯化

,最终得到的胶原蛋白
与我们体内的胶原蛋白相同——

未受污染的全新胶原蛋白

,我们从中制造
不同的医疗植入物:

骨空隙填充物, 例如,

对于严重的骨折,脊柱融合术。

甚至最近,

我们已经能够
在欧洲向市场推出

一种用于
治疗糖尿病足溃疡的流动凝胶

,现在已获准
在临床上使用。

这不是科幻小说。

现在正在发生这种情况。

我们正在使用植物

为人类制造替换零件的医疗植入物。

事实上,最近,
我们已经能够制造出比跟腱

强 6 倍的胶原纤维

太棒了。

我们与来自爱尔兰的合作伙伴一起

考虑了下一件事:

在这些纤维中添加树脂。

通过这样做,

我们已经能够制造出

坚韧约 380%

、弹性增加 300% 的超纤维。

奇怪的是,在未来,

当病人移植

了由这些纤维制成的人造肌腱或韧带时,

我们
在手术后的表现

将比受伤前更好。

那么未来有什么用呢?

在未来,我们相信
我们将能够制造出

许多
大自然为我们提供的纳米生物构件——

胶原蛋白、纳米
纤维素、树脂等等。

这将使我们能够让
更好的机器性能更好,

甚至是心脏。

现在,这颗
心脏不会

像我们从捐赠者那里得到的一样。

会好起来的。

它实际上会表现得更好,

并且会持续更长时间。

我的朋友 Zion Suliman 曾经告诉我

一句聪明的话。

他说:“如果你想要一个新想法,

你应该打开一本旧书。”

我要说
这本书是写的。

它是在超过 30 亿年

的演变过程中写成的。

而文字是生命的DNA。

我们所要做的

就是阅读这篇文章,

拥抱大自然给我们的礼物,

并从这里开始我们的进步。

谢谢你。

(掌声)