Making waves The power of concentration gradients Sasha Wright

If you’ve ever floated on an ocean swell,

you’ll know that the sea moves constantly.

Zoom out, and you’ll see the larger picture:

our Earth, covered by 71 percent water,

moving in one enormous current around the planet.

This intimidating global conveyor belt

has many complicated drivers,

but behind it all is a simple pump

that moves water all over the earth.

The process is called thermohaline circulation,

and it’s driven by a basic concept:

the concentration gradient.

Let’s leave the ocean for one moment

and imagine we’re in an empty room

with lots of Roombas sardined together

in one corner.

Turn them all on at once

and the machines glide outwards

bumping into and away from each other

until the room is filled with an evenly spaced distribution.

The machines have moved randomly

towards equilibrium,

a place where the concentration of a substance

is equally spread out.

That’s what happens along a concentration gradient,

as substances shift passively from a high,

or squashed, concentration,

to a lower, more comfortable one.

How does this relate to ocean currents and thermohaline circulation?

Thermo means temperature,

and haline means salt

because in the real world scenario of the sea,

temperature and salinity drive the shift

from high to low concentrations.

Let’s put you back in the ocean

to see how this works.

Snap!

You’re transformed into a molecule of surface water,

off the temperate coast of New York

surrounded by a zillion rowdy others.

Here, the sun’s rays act as an energizer

that set you and the other water molecules

jostling about, bouncing off each other

like the Roombas did.

The more you spread out,

the less concentrated the water molecules

at the surface become.

Through this passive motion,

you move from a high to a lower concentration.

Let’s suspend the laws of physics for a moment,

and pretend that your molecular self

can plunge deep down into the water column.

In these colder depths,

the comparative lack of solar warmth

makes water molecules sluggish,

meaning they can sit quite still at high concentrations.

No jostling here.

But seeking relief

from the cramped conditions they’re in,

they soon start moving upwards

towards the roomier situation at the surface.

This is how temperature

drives a shift of water molecules

from high to low concentrations,

towards equilibrium.

But sea water is made up of more than just H2O.

There are a great deal of salt ions in it as well.

And like you, these guys have a similar desire

for spacious real estate.

As the sun warms the sea,

some of your fellow water molecules

evaporate from the surface,

increasing the ration of salt to H2O.

The crowded salt ions left behind

notice that lower down,

salt molecules seem to be enjoying more space.

And so an invasion begins,

as they too move downwards in the water column.

In the polar regions,

we see how this small local process

effects global movement.

In the arctic and antarctic,

where ice slabs decorate the water’s surface,

there’s little temperature difference

between surface and deeper waters.

It’s all pretty cold.

But salinity differs,

and in this scenario,

that’s what triggers the action.

Here, the sun’s rays melt surface ice,

depositing a new load of water molecules

into the sea.

That not only increases the proximity

between you and other water molecules,

leaving you vying for space again,

but it also conversely dilutes

the concentration of salt ions.

So, down you go,

riding along the concentration gradient

towards more comfortable conditions.

For salt ions, however,

their lower concentration at the surface,

acts like an advertisement

to the clamoring masses of salt molecules below

who begin their assent.

In both temperate and polar regions,

this passive motion along a concentration gradient,

can get a current going.

And that is the starting point

of the global conveyor

called thermohaline circulation.

This is how a simple concept

becomes the mechanism underlying

one of the largest

and most important systems on our planet.

And if you look around,

you’ll see it happening everywhere.

Turn on a light, and it’s there.

Concentration gradients govern

the flow of electricity,

allowing electrons squashed together in one space

to travel to an area of lower concentration

when a channel is opened,

which you do by flipping a switch.

Right now, in fact, there’s some gradient action going on

inside you as you breath air into your lungs

letting the concentrated oxygen in that air

move passively out of your lungs

and into your blood stream.

We know that the world is filled

with complex physical problems,

but sometimes the first step

towards understanding them can be simple.

So when you confront the magnitude

of the ocean’s currents,

or have to figure out how electricity works,

remember not to panic.

Understanding can be as simple as flipping a switch.

如果你曾经漂浮在海浪上,

你就会知道大海不断地移动。

缩小,您会看到更大的画面:

我们的地球被 71% 的水覆盖,

以一股巨大的水流环绕地球。

这条令人生畏的全球传送带

有许多复杂的驱动器,

但其背后是一个简单的泵

,可以将水输送到整个地球。

该过程称为温盐循环

,它由一个基本概念驱动

:浓度梯度。

让我们离开海洋片刻

,想象我们在一个空房间里,一个角落里

有很多 Roomba 沙丁鱼

立即将它们全部打开

,机器向外滑动

,相互碰撞,

直到房间充满均匀分布的分布。

机器随机移动

到平衡状态,

即物质

浓度均匀分布的地方。

这就是沿着浓度梯度发生的事情,

因为物质会被动地从高

浓度或压扁浓度

转移到较低、更舒适的浓度。

这与洋流和温盐环流有何关系?

Thermo 是指温度

,Haline 是指盐分,

因为在现实世界的海洋场景中,

温度和盐度推动了

从高浓度到低浓度的转变。

让我们把你带回大海

,看看它是如何工作的。

折断!

你变成了一个地表水分子,

在纽约温带海岸

附近被无数喧闹的人包围。

在这里,太阳光线就像一种能量源

,让你和其他水分子

相互

碰撞,像 Roombas 一样相互反弹。

你越分散,表面

的水分子就越不集中

通过这种被动运动,

你从高浓度转移到低浓度。

让我们暂时搁置物理定律

,假装你的分子自我

可以深入水柱。

在这些较冷的深处

,相对缺乏太阳温暖

使水分子变得迟缓,

这意味着它们可以在高浓度下保持静止。

这里不挤。

但是为了

从他们所处的狭窄环境中解脱出来,

他们很快就开始向上移动,

朝着更宽敞的地表环境移动。

这就是温度如何

推动水分子

从高浓度向低浓度转变,从而

达到平衡。

但海水不仅仅是由 H2O 组成的。

里面也有大量的盐离子。

和你一样,这些人对宽敞的房地产也有类似的渴望

当太阳使海洋变暖时,

一些水分子会

从海面蒸发,

从而增加盐与 H2O 的比例。

留下的拥挤的盐离子

注意到更低的

盐分子似乎正在享受更多的空间。

因此入侵开始了,

因为它们也在水柱中向下移动。

在极地地区,

我们看到了这个小的局部过程如何

影响全球运动。

在北极和南极

,冰板装饰着水面,地表水和深水

之间的温差很小

一切都很冷。

但盐度不同

,在这种情况下,

这就是触发动作的原因。

在这里,太阳光线融化了地表冰层,

将新的水分子负载沉积

到海中。

这不仅增加了

你和其他水分子之间的距离,

让你再次争夺空间,

而且相反还会稀释

盐离子的浓度。

所以,沿着浓度梯度往下走,

朝着更舒适的条件前进。

然而,对于盐离子来说,

它们在表面的浓度较低,

就像是

在向下面吵闹的盐分子群发出广告,

他们开始同意。

在温带和极地地区,

这种沿着浓度梯度的被动运动

可以使电流流动。

这就是

称为温盐循环的全球传送带的起点。

这就是一个简单的概念如何

成为

我们星球上最大和最重要的系统之一的机制。

如果你环顾四周,

你会发现它无处不在。

打开一盏灯,它就在那里。

浓度梯度控制

着电流的流动,当通道打开时,

在一个空间中挤压在一起的电子

可以移动到浓度较低的区域

这可以通过拨动开关来实现。

现在,事实上,

当您将空气吸入肺部时,您的体内会发生一些梯度作用,

让空气中的浓缩氧气

被动地从肺部流出

并进入血液。

我们知道世界充满

了复杂的物理问题,

但有时

了解它们的第一步可能很简单。

因此,当您面对

海流的大小,

或者必须弄清楚电力是如何工作的时候,

请记住不要惊慌。

理解可以像拨动开关一样简单。