Selfassembly The power of organizing the unorganized Skylar Tibbits

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

Have you ever wondered

how things are built within our bodies?

Why our bodies can regrow and repair themselves,

and how we can pass on genes

from one generation to the next?

Yet, none of our man-made objects have these traits;

they’re simply thrown away when they break

and they definitely can’t reproduce.

The answer lies in something called self assembly.

Self assembly is a system where unordered parts

come together in an organized structure,

completely on their own.

This means that a pile of parts on your desk should,

in theory, be able to move around on their own,

find one another,

and build something useful.

This seems impossible,

like Transformers

or the Sandman,

but it’s exactly how our bodies are built,

how our immune system works,

and why we can reproduce.

Self assembly is the factory and copy machines within our bodies

that make proteins fold and DNA replicate.

It’s a process that not only happens

in the biological and chemical world,

but is a phenomenon that can be seen from magnets

to snowflakes,

robotics,

social networks,

the formations of cities and galaxies,

to name just a few.

In biology and chemistry,

self assembly is everywhere,

from atomic interactions,

cellular replication

to DNA, RNA, and protein folding.

Proteins are like bicycle chains

with sequences of amino acid links.

They self assemble into 3-D structures

because of the interaction

between the amino acids along the chain,

as well as the relationship

between the chain and the environment.

These forces make the flexible chain

fold into a 3-D shape

that governs the function in the protein.

Viruses, on the other hand, are like soccer balls.

They’re made up of a series of sub-units with specific shapes.

Those shapes have attraction to one another,

so they fit together in precise ways.

Image you want to build a perfect sphere.

It turns out that making a precise sphere

through traditional means is actually quite difficult.

Alternatively, you could try to self assemble the sphere.

One way would be to inflate the sphere

like a bubble or a balloon.

Another option would be to create many identical pieces

that would come together to make a perfect sphere.

You could try to put the pieces together one-by-one,

but it might take a long time

and you would still have human errors.

Instead you could design a connection

between the components like magnets

and dump them into a container.

When you shook the container,

all the parts would find one another

and build the sphere for you.

Self assembly is being used as a new design,

science,

and engineering tool

for making the next generation of technologies

easier to build,

more adaptive,

and less reliant on fossil fuels.

Scientists are now making molecular microchips for computers

where small, molecular elements are given

the right conditions to form themselves into organized pathways.

Similarly, we can now use self assembly

as a way to make 3-D structures with DNA,

like capsules that could deliver drugs inside the body,

releasing them only if certain conditions are met.

Soon, self assembly will be used for larger applications,

where materials can repair themselves,

water pipes can reconfigure on demand,

buildings can adapt on their own

to environment or dynamic loading,

and space structures can self assemble without humans.

Imagine if our factories were more like organisms or brains

and our construction sites were like gardens

that grow and adapt independently.

The possibilities are endless

and it’s now up to us

to design a better world through self assembly.

抄写员:Andrea McDonough
审稿人:Bedirhan Cinar

你有没有想过

我们的身体是如何构建的?

为什么我们的身体可以自我再生和自我修复,

以及我们如何将基因

从一代传给下一代?

然而,我们的人造物体都没有这些特征。

当它们破裂时它们只是被扔掉

并且它们绝对不能繁殖。

答案在于所谓的自组装。

自组装是一个系统,其中无序的零件完全独立地

以有组织的结构组合在一起

这意味着,理论上,你办公桌上的一堆部件

应该能够自行移动、

找到另一个部件

并构建有用的东西。

这似乎是不可能的,

就像变形金刚

或睡魔一样,

但这正是我们的身体是如何构建的,

我们的免疫系统是如何运作的,

以及我们为什么可以繁殖。

自组装是我们

体内制造蛋白质折叠和 DNA 复制的工厂和复制机器。

这是一个不仅发生

在生物和化学世界的过程,

而且是从磁铁

到雪花、

机器人、

社交网络、

城市和星系

的形成等等都可以看到的现象。

在生物学和化学中,

自组装无处不在,

从原子相互作用、

细胞复制

到 DNA、RNA 和蛋白质折叠。

蛋白质就像

具有氨基酸连接序列的自行车链。

由于

沿链的氨基酸之间的相互作用

以及

链与环境之间的关系,它们自组装成 3-D 结构。

这些力使柔性链

折叠成

控制蛋白质功能的 3-D 形状。

另一方面,病毒就像足球。

它们由一系列具有特定形状的子单元组成。

这些形状相互吸引,

因此它们以精确的方式组合在一起。

您想要构建一个完美球体的图像。

事实证明,通过传统手段制作一个精确的球体

,实际上是相当困难的。

或者,您可以尝试自行组装球体。

一种方法是

像气泡或气球一样给球体充气。

另一种选择是创建许多相同的部分

,它们将组合在一起形成一个完美的球体。

您可以尝试将各个部分一个一个拼凑在一起,

但这可能需要很长时间,

而且您仍然会出现人为错误。

相反,您可以设计

磁铁等组件之间的连接

并将它们倒入容器中。

当你摇动容器时,

所有的部分都会互相找到

并为你构建球体。

自组装正被用作一种新的设计、

科学

和工程工具,

以使下一代技术

更易于构建、

更具适应性

并减少对化石燃料的依赖。

科学家们现在正在为计算机制造分子微芯片,

在这些芯片中,小分子元素被

赋予合适的条件,以形成有组织的路径。

同样,我们现在可以使用自组装

作为一种用 DNA 制造 3-D 结构的方法,

例如可以在体内输送药物的胶囊,

只有在满足某些条件时才会释放它们。

很快,自组装将用于更大的应用,

其中材料可以自我修复,

水管可以按需重新配置,

建筑物可以自行

适应环境或动态负载

,空间结构可以在没有人的情况下自行组装。

想象一下,如果我们的工厂更像有机体或大脑,

而我们的建筑工地就像花园

,可以独立生长和适应。

可能性是

无穷无尽的,现在由我们

来通过自组装设计一个更美好的世界。