The incredible chemistry powering your smartphone Cathy Mulzer

Translator: Ivana Korom
Reviewer: Joanna Pietrulewicz

When I waltzed off to high school
with my new Nokia phone,

I thought I just had
the new, coolest replacement

for my old pink princess walkie-talkie.

Except now, my friends and I
could text or talk to each other

wherever we were,

instead of pretending,

when we were running around
each other’s backyards.

Now, I’ll be honest.

Back then, I didn’t think a lot
about how these devices were made.

They tended to show up
on Christmas morning,

so maybe they were made
by the elves in Santa’s workshop.

Let me ask you a question.

Who do you think the real elves
that make these devices are?

If I ask a lot of the people I know,

they would say it’s the hoodie-wearing
software engineers in Silicon Valley,

hacking away at code.

But a lot has to happen to these devices

before they’re ready for any kind of code.

These devices start at the atomic level.

So if you ask me,

the real elves are the chemists.

That’s right, I said the chemists.

Chemistry is the hero
of electronic communications.

And my goal today is to convince you

to agree with me.

OK, let’s start simple,

and take a look inside
these insanely addictive devices.

Because without chemistry,

what is an information
superhighway that we love,

would just be a really expensive,
shiny paperweight.

Chemistry enables all of these layers.

Let’s start at the display.

How do you think we get
those bright, vivid colors

that we love so much?

Well, I’ll tell you.

There’s organic polymers
embedded within the display,

that can take electricity
and turn it into the blue, red and green

that we enjoy in our pictures.

What if we move down to the battery?

Now there’s some intense research.

How do we take the chemical principles
of traditional batteries

and pair it with new,
high surface area electrodes,

so we can pack more charge
in a smaller footprint of space,

so that we could power
our devices all day long,

while we’re taking selfies,

without having to recharge our batteries

or sit tethered to an electrical outlet?

What if we go to the adhesives
that bind it all together,

so that it could withstand
our frequent usage?

After all, as a millennial,

I have to take my phone out
at least 200 times a day to check it,

and in the process,
drop it two to three times.

But what are the real brains
of these devices?

What makes them work
the way that we love them so much?

Well that all has to do
with electrical components and circuitry

that are tethered
to a printed circuit board.

Or maybe you prefer a biological metaphor –

the motherboard,
you might have heard of that.

Now, the printed circuit board
doesn’t really get talked about a lot.

And I’ll be honest,
I don’t know why that is.

Maybe it’s because
it’s the least sexy layer

and it’s hidden beneath all of those
other sleek-looking layers.

But it’s time to finally give this
Clark Kent layer

the Superman-worthy praise it deserves.

And so I ask you a question.

What do you think
a printed circuit board is?

Well, consider a metaphor.

Think about the city that you live in.

You have all these points of interest
that you want to get to:

your home, your work, restaurants,

a couple of Starbucks on every block.

And so we build roads
that connect them all together.

That’s what a printed circuit board is.

Except, instead of having
things like restaurants,

we have transistors on chips,

capacitors, resistors,

all of these electrical components

that need to find a way
to talk to each other.

And so what are our roads?

Well, we build tiny copper wires.

So the next question is,

how do we make these tiny copper wires?

They’re really small.

Could it be that we go
to the hardware store,

pick up a spool of copper wire,

get some wire cutters, a little clip-clip,

saw it all up and then, bam –
we have our printed circuit board?

No way.

These wires are way too small for that.

And so we have to rely
on our friend: chemistry.

Now, the chemical process
to make these tiny copper wires

is seemingly simple.

We start with a solution

of positively charged copper spheres.

We then add to it an insulating
printed circuit board.

And we feed those
positively charged spheres

negatively charged electrons

by adding formaldehyde to the mix.

So you might remember formaldehyde.

Really distinct odor,

used to preserve frogs in biology class.

Well it turns out it can do
a lot more than just that.

And it’s a really key component

to making these tiny copper wires.

You see, the electrons
on formaldehyde have a drive.

They want to jump over to those
positively charged copper spheres.

And that’s all because of a process
known as redox chemistry.

And when that happens,

we can take these positively
charged copper spheres

and turn them into bright,

shiny, metallic and conductive copper.

And once we have conductive copper,

now we’re cooking with gas.

And we can get all
of those electrical components

to talk to each other.

So thank you once again to chemistry.

And let’s take a thought

and think about how far
we’ve come with chemistry.

Clearly, in electronic communications,

size matters.

So let’s think about
how we can shrink down our devices,

so that we can go from our 1990s
Zack Morris cell phone

to something a little bit more sleek,

like the phones of today
that can fit in our pockets.

Although, let’s be real here:

absolutely nothing can fit
into ladies' pants pockets,

if you can find a pair of pants
that has pockets.

(Laughter)

And I don’t think chemistry
can help us with that problem.

But more important
than shrinking the actual device,

how do we shrink
the circuitry inside of it,

and shrink it by 100 times,

so that we can take the circuitry
from the micron scale

all the way down to the nanometer scale?

Because, let’s face it,

right now we all want
more powerful and faster phones.

Well, more power and faster
requires more circuitry.

So how do we do this?

It’s not like we have some magic
electromagnetic shrink ray,

like professor Wayne Szalinski used
in “Honey, I Shrunk the Kids”

to shrink his children.

On accident, of course.

Or do we?

Well, actually, in the field,

there’s a process
that’s pretty similar to that.

And it’s name is photolithography.

In photolithography,
we take electromagnetic radiation,

or what we tend to call light,

and we use it to shrink down
some of that circuitry,

so that we could cram more of it
into a really small space.

Now, how does this work?

Well, we start with a substrate

that has a light-sensitive film on it.

We then cover it with a mask
that has a pattern on top of it

of fine lines and features

that are going to make the phone work
the way that we want it to.

We then expose a bright light
and shine it through this mask,

which creates a shadow
of that pattern on the surface.

Now, anywhere that the light
can get through the mask,

it’s going to cause
a chemical reaction to occur.

And that’s going to burn the image
of that pattern into the substrate.

So the question you’re probably asking is,

how do we go from a burned image

to clean fine lines and features?

And for that, we have to use
a chemical solution

called the developer.

Now the developer is special.

What it can do is take
all of the nonexposed areas

and remove them selectively,

leaving behind clean
fine lines and features,

and making our miniaturized devices work.

So, we’ve used chemistry now
to build up our devices,

and we’ve used it
to shrink down our devices.

So I’ve probably convinced you
that chemistry is the true hero,

and we could wrap it up there.

(Applause)

Hold on, we’re not done.

Not so fast.

Because we’re all human.

And as a human, I always want more.

And so now I want to think
about how to use chemistry

to extract more out of a device.

Right now, we’re being told
that we want something called 5G,

or the promised
fifth generation of wireless.

Now, you might have heard of 5G

in commercials
that are starting to appear.

Or maybe some of you even experienced it

in the 2018 winter Olympics.

What I’m most excited about for 5G

is that, when I’m late,
running out of the house to catch a plane,

I can download movies
onto my device in 40 seconds

as opposed to 40 minutes.

But once true 5G is here,

it’s going to be a lot more
than how many movies

we can put on our device.

So the question is,
why is true 5G not here?

And I’ll let you in on a little secret.

It’s pretty easy to answer.

It’s just plain hard to do.

You see, if you use
those traditional materials and copper

to build 5G devices,

the signal can’t make it
to its final destination.

Traditionally, we use
really rough insulating layers

to support copper wires.

Think about Velcro fasteners.

It’s the roughness of the two pieces
that make them stick together.

That’s pretty important
if you want to have a device

that’s going to last longer

than it takes you to rip it out of the box

and start installing
all of your apps on it.

But this roughness causes a problem.

You see, at the high speeds for 5G

the signal has to travel
close to that roughness.

And it makes it get lost
before it reaches its final destination.

Think about a mountain range.

And you have a complex system of roads
that goes up and over it,

and you’re trying
to get to the other side.

Don’t you agree with me

that it would probably take
a really long time,

and you would probably get lost,

if you had to go up and down
all of the mountains,

as opposed to if you just
drilled a flat tunnel

that could go straight on through?

Well it’s the same thing
in our 5G devices.

If we could remove this roughness,

then we can send the 5G signal

straight on through uninterrupted.

Sounds pretty good, right?

But hold on.

Didn’t I just tell you
that we needed that roughness

to keep the device together?

And if we remove it,
we’re in a situation where now the copper

isn’t going to stick
to that underlying substrate.

Think about building
a house of Lego blocks,

with all of the nooks and crannies
that latch together,

as opposed to smooth building blocks.

Which of the two is going to have
more structural integrity

when the two-year-old comes
ripping through the living room,

trying to play Godzilla
and knock everything down?

But what if we put glue
on those smooth blocks?

And that’s what
the industry is waiting for.

They’re waiting for the chemists
to design new, smooth surfaces

with increased inherent adhesion

for some of those copper wires.

And when we solve this problem,

and we will solve the problem,

and we’ll work
with physicists and engineers

to solve all of the challenges of 5G,

well then the number of applications
is going to skyrocket.

So yeah, we’ll have things
like self-driving cars,

because now our data networks
can handle the speeds

and the amount of information
required to make that work.

But let’s start to use imagination.

I can imagine going into a restaurant
with a friend that has a peanut allergy,

taking out my phone,

waving it over the food

and having the food tell us

a really important answer to a question –

deadly or safe to consume?

Or maybe our devices will get so good

at processing information about us,

that they’ll become
like our personal trainers.

And they’ll know the most efficient way
for us to burn calories.

I know come November,

when I’m trying to burn off
some of these pregnancy pounds,

I would love a device
that could tell me how to do that.

I really don’t know
another way of saying it,

except chemistry is just cool.

And it enables all of these
electronic devices.

So the next time you send a text
or take a selfie,

think about all those atoms
that are hard at work

and the innovation that came before them.

Who knows,

maybe even some of you
listening to this talk,

perhaps even on your mobile device,

will decide that you too
want to play sidekick

to Captain Chemistry,

the true hero of electronic devices.

Thank you for your attention,

and thank you chemistry.

(Applause)

译者:Ivana Korom
审稿人:Joanna

Pietrulewicz 当我
带着我的新诺基亚手机跳华尔兹上高中时,

我以为我刚刚
有了一个新的、最酷的

旧粉红色公主对讲机的替代品。

除了现在,当我们在彼此的后院跑来跑去时,我和我的朋友们
可以

在任何地方发短信或互相交谈,

而不是假装

现在,我会诚实的。

那时,我并没有过多
考虑这些设备是如何制造的。

它们往往会
在圣诞节早上出现,

所以它们可能
是圣诞老人工作室的精灵制作的。

让我问你一个问题。


认为制造这些设备的真正精灵是谁?

如果我问很多我认识的人,

他们会说是硅谷那些穿着连帽衫的
软件工程师,他们

在敲代码。

但在这些设备

准备好使用任何类型的代码之前,它们必须发生很多事情。

这些设备从原子级别开始。

所以如果你问我

,真正的精灵是化学家。

没错,我说化学家。

化学
是电子通讯的英雄。

我今天的目标是说服你

同意我的观点。

好的,让我们从简单的开始

,看看
这些令人上瘾的设备。

因为没有化学

,我们喜欢的信息高速公路

将只是一个非常昂贵、
闪亮的镇纸。

化学使所有这些层成为可能。

让我们从显示器开始。

您认为我们如何获得我们如此喜爱的
那些明亮、鲜艳的色彩

好吧,我会告诉你的。

显示器中嵌入了有机聚合物,

它可以吸收电能
并将其转化为

我们在照片中喜欢的蓝色、红色和绿色。

如果我们向下移动到电池怎么办?

现在有一些深入的研究。

我们如何利用传统电池的化学原理

并将其与新的
高表面积电极配对,

这样我们就可以
在更小的空间内装更多的电荷,

这样我们就可以
整天为我们的设备供电,

而我们正在服用 自拍,

无需给电池充电

或拴在电源插座上?

如果我们使用将它们粘合在一起的粘合剂

这样它就可以承受
我们的频繁使用怎么办?

毕竟,作为千禧一代,

我每天至少要拿出手机
检查 200 次,

并在此过程中将手机
丢掉两到三遍。

但这些设备的真正大脑
是什么?

是什么让他们
以我们如此爱他们的方式工作?

好吧,这一切都


在印刷电路板上的电子元件和电路有关。

或者,也许您更喜欢生物隐喻

——主板,
您可能听说过。

现在,印刷电路板
并没有真正得到太多谈论。

老实说,
我不知道为什么会这样。

也许是因为
它是最不性感的层

,它隐藏在所有
其他看起来光滑的层之下。

但现在是时候最终给予
克拉克肯特这一层

应得的超人赞誉了。

所以我问你一个问题。


认为印刷电路板是什么?

好吧,考虑一个比喻。

想想你居住的城市。

你有所有这些你想去的兴趣点

你的家、你的工作、餐馆,

每个街区都有几家星巴克。

因此,我们建造
了将它们连接在一起的道路。

这就是印刷电路板。

除了
像餐馆

这样的东西,我们在芯片上安装了晶体管、

电容器、电阻器,

所有这些电子元件

都需要找到一种
相互交流的方式。

那么我们的道路是什么?

好吧,我们制造细小的铜线。

那么下一个问题是,

我们如何制作这些细小的铜线?

他们真的很小。

是不是我们
去五金店,

拿起一卷铜线,

买一些剪线钳,一个小夹子,

把它们都锯好,然后,砰——
我们有我们的印刷电路板?

没门。

这些电线太小了。

所以我们必须
依靠我们的朋友:化学。

现在,
制造这些微小铜线

的化学过程似乎很简单。

我们从带

正电的铜球溶液开始。

然后我们添加一个绝缘
印刷电路板。

我们通过向混合物中添加甲醛来为这些
带正电的球体提供

带负电的电子

所以你可能还记得甲醛。

非常独特的气味,

用于保存生物课上的青蛙。

事实证明,它可以做
的远不止这些。

它是

制造这些细小的铜线的真正关键部件。

你看,
甲醛上的电子有驱动力。

他们想跳到那些
带正电的铜球上。

而这一切都归功于一个
被称为氧化还原化学的过程。

当这种情况发生时,

我们可以将这些带
正电的

铜球变成明亮、

有光泽、金属和导电的铜。

一旦我们有了导电铜,

现在我们就可以用煤气做饭了。

我们可以让
所有这些电子元件

相互交流。

所以再次感谢化学。

让我们想一想

,想想
我们在化学方面已经走了多远。

显然,在电子通信中,

大小很重要。

所以让我们考虑一下
如何缩小我们的设备,

这样我们就可以从 1990 年代的
Zack Morris 手机

升级到更时尚的东西,

比如
今天可以放在口袋里的手机。

虽然,让我们在这里

实事求是:

如果你能找到一条
有口袋的裤子,绝对没有东西可以放进女士的裤子口袋里。

(笑声)

我认为化学
不能帮助我们解决这个问题。


比缩小实际设备更重要的是,

我们如何缩小
它内部的电路,将其

缩小 100 倍,

以便我们可以将电路
从微米级

一直到纳米级?

因为,让我们面对现实吧,

现在我们都想要
功能更强大、速度更快的手机。

好吧,更大的功率和更快的速度
需要更多的电路。

那么我们该怎么做呢?

不像我们有一些神奇的
电磁收缩射线,

就像韦恩·萨林斯基教授
在“亲爱的,我把孩子们

缩小了”中用来缩小他的孩子一样。

当然是意外。

还是我们?

嗯,实际上,在现场,

有一个
与此非常相似的过程。

它的名字叫光刻。

在光刻技术中,
我们采用电磁辐射,

或者我们倾向于称之为光的东西

,我们用它来缩小
一些电路,

这样我们就可以将更多的电路
塞进一个非常小的空间。

现在,这是如何工作的?

好吧,我们从上面

有光敏薄膜的基板开始。

然后我们用一个面具覆盖它
,上面有一个图案,上面

有细纹和特征

,这将使手机
按照我们想要的方式工作。

然后我们曝光一束强光
并通过这个遮罩照射它,

这会
在表面上产生该图案的阴影。

现在,只要光线
可以通过面罩,

就会
发生化学反应。

这会将图案的图像刻录
到基材中。

所以你可能要问的问题是,

我们如何从烧焦的图像

变成干净的细纹和特征?

为此,我们必须使用
一种称为显影剂的化学溶液

现在开发商很特别。

它可以做的
是取走所有未曝光的区域

并有选择地去除它们,

留下干净的
细纹和特征,

并使我们的小型化设备工作。

所以,我们现在已经使用化学
来构建我们的设备,

并且我们已经使用它
来缩小我们的设备。

所以我可能已经说服
你化学是真正的英雄

,我们可以把它总结在那里。

(掌声)

等等,我们还没结束。

没那么快。

因为我们都是人。

作为一个人,我总是想要更多。

所以现在我想
考虑如何使用化学

从设备中提取更多。

现在,我们被
告知我们想要一种叫做 5G 的东西,

或者承诺的
第五代无线网络。

现在,您可能已经


开始出现的商业广告中听说过 5G。

或者也许你们中的一些人甚至

在 2018 年冬季奥运会上经历过。

我对 5G 最兴奋的

是,当我迟到了,
跑出家赶飞机时,

我可以
在 40 秒内将电影下载到我的设备上

,而不是 40 分钟。

但是,一旦真正的 5G 出现,

它将远远超过

我们可以在设备上放多少部电影。

那么问题来了,
为什么真正的 5G 不在这里?

我会让你知道一个小秘密。

这很容易回答。

这很简单。

你看,如果你使用
那些传统材料和铜

来构建 5G 设备

,信号就无法
到达最终目的地。

传统上,我们使用
非常粗糙的绝缘层

来支撑铜线。

想想魔术贴紧固件。

正是这两部分的粗糙度
使它们粘在一起。

如果您想让

设备的使用寿命

超过开箱即用

并开始
在其上安装所有应用程序所需的时间,那么这一点非常重要。

但是这种粗糙会导致一个问题。

你看,在 5G 的高速下,

信号必须
接近粗糙度。


使它在到达最终目的地之前迷路了。

想想山脉。

而且你有一个复杂的道路系统
,向上和越过它

,你正
试图到达另一边。

你不同意我

的观点

如果你必须在
所有的山上上上下下,你可能会迷路,

而不是
钻一个可以通行的平坦

隧道 直接通过?

好吧
,我们的 5G 设备也是如此。

如果我们可以消除这种粗糙,

那么我们可以

不间断地直接发送 5G 信号。

听起来不错,对吧?

但是坚持住。

我不是刚刚告诉过你
,我们需要那种粗糙度

来将设备保持在一起吗?

如果我们将其移除,
我们将处于这样一种情况,即

铜不会粘
在下面的基板上。

想想
用乐高积木建造一座房子

,所有的角落和缝隙
都锁在一起,

而不是光滑的积木。

当两岁的孩子
闯入客厅,

试图扮演哥斯拉
并将一切都击倒时,两者中的哪一个将具有更多的结构完整性?

但是如果我们
在那些光滑的块上涂上胶水呢?

而这
正是行业所期待的。

他们正在等待化学家
为其中一些铜线设计新的、光滑的表面

,并增加其固有的附着力

当我们解决了这个问题

,我们将解决这个问题

,我们将
与物理学家和工程师

一起解决 5G 的所有挑战,

那么应用程序的数量
将会激增。

所以,是的,我们将拥有
像自动驾驶汽车这样的东西,

因为现在我们的数据网络
可以处理完成这项工作所需的速度

和信息量

但是,让我们开始发挥想象力。

我可以想象
和一个对花生过敏的朋友去一家餐馆,

拿出我的手机,

在食物上挥动它

,让食物告诉我们

一个问题的非常重要的答案——

致命还是安全食用?

或者,也许我们的设备会非常

擅长处理关于我们的信息,

以至于它们会变
得像我们的私人教练一样。

他们会知道
我们燃烧卡路里的最有效方法。

我知道到了 11 月,

当我试图
减掉一些怀孕期间的体重时,

我会喜欢
一个可以告诉我如何做到这一点的设备。

我真的不知道
另一种说法,

除了化学很酷。

它支持所有这些
电子设备。

所以下次你发短信
或自拍时,

想想所有
那些努力工作的原子

以及摆在他们面前的创新。

谁知道呢,

也许你们中的一些人在
听这个演讲,

甚至在你的移动设备上,

会决定你也
想扮演

化学上尉的伙伴

,电子设备的真正英雄。

谢谢你的关注

,谢谢你的化学。

(掌声)