The power of venom and how it could one day save your life Mand Holford

How does a sea snail catch a fish?

I mean, it’s a snail, so it’s slow,

and the fish is not.

But yet, this happens.

Hidden under the sand is a cone snail.

And that orange thing you see
is kind of like a tongue.

We call it a proboscis.

It uses that to track and subdue
this unsuspecting fish.

In this predator-prey interaction,

these are clearly not
your garden variety escargots.

These are assassins of the sea.

And their weapon of choice is venom.

Venom, like the venom you find
in venomous snakes and scorpions,

these sea snails, they use their venom
to subdue fish, worms

and other snails.

And the venom of these snails,

it’s not just one thing,

it’s actually a cocktail
of toxic molecules

that are packaged and delivered
through a false tooth called a radula.

You can think of the radulas
as hypodermic needles.

Now, no need to worry,

these snails are practicing
good needle habits,

because each radula is only used once.

Now from your own knowledge
about venomous organisms,

and the keep-you-up-at-night
fish-killing video that I just showed you,

you might think that venom
is dangerous and all bad.

Well, yes and no.

A more accurate way of thinking of venom

is to think of it as both
a supervillain and a superhero.

In my lab, we study the evolution
of venom in these sea snails

as a force for good.

Sounds like a stretch,

or maybe even snake oil,

but actually,

while there are snakes involved,
the product is legit.

One reason the venom product
is so successful

is that it transforms a physical warfare
into a biochemical one.

Where usually the predator-prey
interaction is one of brute force,

venom takes it to a molecular scale.

And it’s not size that matters,

but the mixture of your venom arsenal.

The chemistry of the toxins
in your arsenal

is what’s going to enable David
to conquer Goliath.

And in our scenario,
David is clearly the snail.

Another feature of venom
that makes it so successful

is that the toxins work
with the precision of a Swiss Army knife.

And so these toxins,

they come for strongholds
that help an organism to function.

So they target blood, brain and membranes.

Whether it’s snail venom or snake venom,

they each have components
that can do things

like cause your blood to clot,

what we call “hemotoxic.”

Or they cause neurons in your brains
to not function normally,

what we call “neurotoxic.”

Or they have toxins that will poke holes
into the membranes of your cells,

causing them to rupture
and, basically, explode,

what we call “cytotoxic.”

Cellular explosion, people.

Now, if that is not all powerful
and all present,

nothing is.

Now a little about me,

and why I’m so obsessed with venom.

I grew up in New York City

with forced access
to the Natural History Museum.

I say “forced access,”

because I’m one of five kids,

and my parents used museums
as a form of childcare.

There were two rules:

Don’t lose anybody

and meet Mom and Dad
at the African elephants

at 5:30, when the museum closes.

Those totally unsupervised days
running through the halls of the museum

were full of adventure and exploration.

And that’s how I feel
when I’m studying venom.

It’s a scientific adventure.

We’re boldly exploring this entity
that connects nature and humanity.

Another reason
that I’m obsessed with venom

is because of its duality.

When you inject the components
of a venom arsenal into an organism,

it can kill or it can cure.

At a molecular level,
several things can happen.

You saw one thing, paralysis in the fish.

Now that was happening
because the toxins in the venom

were attacking how the fish’s cells
communicate with each other,

preventing it from swimming away.

Are there other things
that I would like to use venom to attack?

For sure.

And one of those is cancer.

Cancer tumors are cells.

And like all cells,

they communicate with themselves
and their environment around them.

So we would like to find venom components

that are very good at disrupting
how the tumor cells communicate.

Similar to how the venom disrupted
how the fish cells communicated

and the fish couldn’t swim away.

In my lab, we study cancer
as a channelopathy.

What this means is, basically,
we’re looking for venom components

that will target channels
that are overexpressed in tumor cells

versus normal cells.

The cancer that we’re most
focused on right now

is liver cancer.

And that’s because since the 1980s,

the death rate of liver
cancer has doubled,

and it’s an emerging threat in the US.

In a screen in which we had cervical,

neuroblastoma, prostate
and liver cancer cells,

we found a compound from a terebrid snail

that seems to attack liver cancer cells,

and only liver cancer cells,
and none of the others that were tested.

And then, when we took this compound
and we injected it into mouse models

that were expressing liver cancer cells,

it significantly inhibited
the growth of the tumors.

We’re not quite sure how this works yet,

we’re still investigating the mechanism

and how we can make
this compound more effective,

so you can’t rush out to the pharmacy

and order up a killer snail
liver-cancer therapy treatment.

Not yet.

Basically, what we think is happening

is that the compound is blocking
a specific channel,

prohibiting the transmission
of a specific chemical

that leads to downstream signaling

that enables the tumor to multiply
and draw blood to itself.

What we’re doing in studying
the components of venom

to find treatments for human
diseases and disorders,

is not new,

it’s what we call natural
products drug discovery,

and it’s been happening for centuries,

and in cultures all over the world.

Venoms are not only giving us
cool new compounds,

but they’re also giving us
new ways of thinking

about how we treat
human diseases and disorders.

And I’ll give you three examples.

The first is from killer
snails, of course.

And so the first drug from these snails
that is on the market

is called ziconotide, or Prialt,

and it’s used to treat chronic pain
in HIV and cancer patients.

Prialt is a nonaddictive pain therapy.

Three magic words when you think
about how we’re treating pain currently.

We’re using things that have
a huge cost of addiction.

So think of morphine

or think of any of your favorite
opioid out there.

What the snails have done

is they’ve shown us a way to treat pain
without the addiction,

which is huge.

The next example comes
from the Brazilian pit viper.

From these snakes, we’ve derived
a compound called captopril.

Captopril is used to treat
high blood pressure,

and captopril is a breakthrough drug.

But not only in and of itself,

but because it advanced
a whole class of drugs,

what we know as ACE inhibitors,

which are the most commonly [prescribed]
for treating hypertension

and heart failure.

The last example is from the Gila monster.

And this is a really exciting example
of understanding the ecology

of these organisms,

and pairing it with efficient
drug discovery.

And Gila monsters are binge eaters.

So when they bite into a large meal,

they release things in their venom
that lower blood sugar.

So what’s the drug that you think
we found from the Gila monster?

A compound that is used to lower
the blood sugar in diabetic patients.

Now these are three marvelous examples,

but we’ve just scratched the surface.

There’s so much more venom
out there for us to study.

In fact, we think that 15 percent
of all the animals on the planet

are venomous.

And I think this is a low estimate,

given the fact that we haven’t surveyed
all the animals on the planet.

But nature seems to have found
something that she likes,

and she’s repeated it
over and over and over again,

leading to the vast array of animals
that we see around us

and all throughout the tree of life.

So whether we’re talking
about my fave, killer snails,

or jellyfish,

or the larvae of butterflies and moths,

or platypus or slow lorises,

whether by sea, land or air,

you’re sure to encounter
a venomous creature.

Remember when I told you

that venom can be both
a superhero and a supervillain,

and you doubted me?

Mhm.

We’re in a race to harness
all of this venom goodness

before we lose the vast majority
of animals on our planet.

It’s a holistic process.

You can’t have the therapeutic treatments
without having the animals.

And you can’t have the animals

without having their ecosystems.

So for me and the snails,

what it means is
we have to save the oceans.

And because venomous animals
are found everywhere,

we basically have to save the planet.

So do it for the venomous animals,

if you don’t want to do it for yourself.

And who knows,

some day, snail venom
might just save your life.

Thank you.

海螺是怎么钓到鱼的?

我的意思是,它是蜗牛,所以它很慢,

而鱼不是。

但是,这种情况发生了。

隐藏在沙子下的是一只锥形蜗牛。

你看到的那个橙色的东西
有点像舌头。

我们称之为长鼻。

它用它来追踪和制服
这条毫无戒心的鱼。

在这种捕食者与猎物的互动中,

这些显然不是
您的花园品种蜗牛。

这些是海上的刺客。

他们选择的武器是毒液。

毒液,就像你
在毒蛇和蝎子中发现的毒液一样,

这些海蜗牛,它们用它们的毒液
来制服鱼、蠕虫

和其他蜗牛。

而这些蜗牛的毒液,

它不仅仅是一回事,

它实际上是一种
有毒分子的混合物

,它们
通过一种叫做 radula 的假牙进行包装和传递。

您可以将齿舌
视为皮下注射针。

现在,不用担心,

这些蜗牛正在
养成良好的打针习惯,

因为每个扇贝只使用一次。

现在,根据你自己
对有毒生物的了解,

以及
我刚刚向你展示的让你彻夜难眠的杀鱼视频,

你可能会认为毒液
很危险,而且很糟糕。

嗯,是的,也不是。

毒液的一种更准确的思考方式

是将其
视为超级反派和超级英雄。

在我的实验室里,我们研究了
这些海蜗牛中毒液的进化,将其

作为一种永远的力量。

听起来像是一种延伸,

甚至可能是蛇油,

但实际上,

虽然涉及蛇,但
该产品是合法的。

毒液
产品如此成功的一个原因

是它将物理战争
转变为生化战争。

捕食者与猎物的
相互作用通常是一种蛮力,而

毒液则将其带到了分子尺度。

重要的不是大小,

而是你的毒液库的混合物。

你的武器库中毒素的化学性质

将使大卫
能够征服歌利亚。

在我们的场景中,
大卫显然是蜗牛。

毒液如此成功的另一个特点是毒素的作用
就像

瑞士军刀一样精确。

所以这些毒素,

它们是为了
帮助有机体发挥作用的据点。

因此它们针对血液、大脑和细胞膜。

无论是蜗牛毒液还是蛇毒液,

它们都含有

可以使您的血液凝结之类的成分,

我们称之为“血液毒性”。

或者它们会导致你大脑中的神经元
无法正常运作,

我们称之为“神经毒性”。

或者它们含有的毒素会
在你的细胞膜上戳洞,

导致它们破裂
,基本上会爆炸,

我们称之为“细胞毒性”。

细胞爆炸,人们。

现在,如果这不是全部强大
且全部存在,那么

什么都不是。

现在谈谈我,

以及为什么我对毒液如此着迷。

我在纽约长大

,被迫
进入自然历史博物馆。

我说“强制进入”,

因为我是五个孩子中的一个,

而我的父母将博物馆
作为一种托儿方式。

有两条规则:

不要失去任何人

,并

博物馆关闭时的 5 点 30 分在非洲象馆与爸爸妈妈见面。

那些在博物馆大厅里完全无人看管的日子

充满了冒险和探索。

这就是
我研究毒液时的感受。

这是一次科学冒险。

我们正在大胆探索
这个连接自然与人类的实体。

我痴迷于毒液

的另一个原因是它的二元性。

当您将
毒液库的成分注入生物体时,

它可以杀死或治愈。

在分子水平上,
可能会发生几件事。

你看到了一件事,鱼瘫痪了。

现在这种情况正在发生,
因为毒液中的毒素

正在攻击鱼的细胞
相互交流的方式,

阻止它游走。

还有其他
我想用毒液攻击的东西吗?

一定。

其中之一就是癌症。

癌症肿瘤是细胞。

和所有细胞一样,

它们与自己
和周围的环境交流。

因此,我们希望找到

非常擅长
破坏肿瘤细胞交流方式的毒液成分。

类似于毒液如何破坏
鱼细胞的交流方式

,使鱼无法游走。

在我的实验室中,我们将癌症
作为一种通道病进行研究。

这意味着,基本上,
我们正在寻找

能够靶向
在肿瘤细胞与正常细胞中过度表达的通道的毒液成分

我们现在最
关注的

癌症是肝癌。

那是因为自 1980 年代以来,

肝癌的
死亡率翻了一番

,这是美国新出现的威胁。

在我们检查宫颈癌、

神经母细胞瘤、前列腺癌
和肝癌细胞的筛查中,

我们发现了一种来自 terebrid 蜗牛的化合物,

它似乎攻击肝癌细胞,

而且只攻击肝癌细胞,
而其他经过测试的细胞都没有。

然后,当我们将这种
化合物注射到

表达肝癌细胞的小鼠模型中时,

它显着
抑制了肿瘤的生长。

我们还不太确定它是如何工作的,

我们仍在研究其机制

以及如何使
这种化合物更有效,

因此您不能急于去

药房订购致命的蜗牛
肝癌疗法。

还没有。

基本上,我们认为正在发生的事情

是该化合物阻断
了一个特定的通道,

阻止
了一种特定化学物质的传输,这种化学

物质导致下游信号传导

,使肿瘤能够繁殖
并将血液吸引到自身。

我们在
研究毒液成分

以寻找治疗人类
疾病和紊乱

的方法方面所做的工作并不新鲜,这就是我们所说的天然
产物药物发现

,它已经发生了几个世纪,

并且在世界各地的文化中都在发生。

毒液不仅为我们提供了
很酷的新化合物,

而且还为我们提供

思考如何治疗
人类疾病和紊乱的新方法。

我给你举三个例子。

首先是来自杀手
蜗牛,当然。

因此,市场上第一种来自这些蜗牛的药物

被称为齐考诺肽或Prialt

,它用于治疗
艾滋病毒和癌症患者的慢性疼痛。

Prialt 是一种非成瘾性疼痛疗法。

当您想到我们目前如何治疗疼痛时,三个神奇的词

我们正在使用
具有巨大成瘾成本的东西。

所以想想吗啡

或任何你最喜欢的
阿片类药物。

蜗牛所做的

是它们向我们展示了一种无需上瘾就能治疗疼痛的方法

这是巨大的。

下一个例子
来自巴西蝮蛇。

从这些蛇中,我们衍生
出一种叫做卡托普利的化合物。

卡托普利用于治疗
高血压

,卡托普利是一种突破性药物。

但不仅它本身,

而且因为它推进
了一整类药物,

我们所知道的 ACE 抑制剂,

这是治疗高血压和心力衰竭最常用的 [处方]

最后一个例子来自 Gila 怪物。


是了解

这些生物

的生态学并将其与有效的
药物发现相结合的一个非常令人兴奋的例子。

吉拉怪物是暴食者。

因此,当它们大吃一顿时,

它们会在毒液
中释放出降低血糖的物质。

那么你认为
我们从吉拉怪物身上发现的药物是什么?

一种用于
降低糖尿病患者血糖的化合物。

现在这是三个了不起的例子,

但我们只是触及了表面。

那里有更多的
毒液可供我们研究。

事实上,我们认为地球上 15%
的动物

都是有毒的。

而且我认为这是一个低估计,

因为我们还没有调查
过地球上所有的动物。

但大自然似乎找到
了她喜欢的东西,她

一遍又一遍地重复它,

导致
我们在我们周围

和整个生命之树中看到的大量动物。

因此,无论我们谈论的
是我最喜欢的杀手蜗牛,

还是水母,

还是蝴蝶和飞蛾的幼虫,

或者鸭嘴兽或懒猴,

无论是在海上、陆地还是空中,

你肯定会遇到
一种有毒的生物。

还记得我告诉过

你毒液既可以
是超级英雄也可以是超级恶棍时

,你怀疑我吗?

嗯。 在我们失去地球上绝大多数动物之前,

我们正在竞相利用
所有这些毒液的好处

这是一个整体的过程。 没有动物

就无法进行治疗

如果没有生态系统,你就不能拥有动物

所以对我和蜗牛来说,

这意味着
我们必须拯救海洋。

而且因为有毒
动物随处可见,

我们基本上必须拯救地球。 如果

你不想为自己做,那就为有毒的动物

做吧。

谁知道,

有一天,蜗牛毒液
可能会救你一命。

谢谢你。