The Super Powers of Wood Buildings That Shape Themselves

[Music]

today we’re going to talk

about shape so shape is everywhere

around us

and what you might not realize is how

the things that we use

every day are actually shaped things

like the seat of your chair

are produced by by pulling and pushing

on the materials

with giant hydraulic presses to fit

exactly to the contours of your body

and when it comes to shape some of the

largest things that we need to shape

are for our buildings in architecture

shape gives us form and structure

and it creates the things in which we

inhabit every day

so let’s first talk about a building

here in stuttgart

so this is a really controversial

building

but i like it i love the architectural

features

the way that the light can enter from

above and most of all i really like the

geometry

it’s smooth and elegant but what i don’t

like about this building

is how it’s made because well as

architects we’ve developed digital

processes to optimize our models on the

screen

and robotically produce the parts which

make up each piece of our building

the way in which we physically do it is

still i would argue

backwards so for these columns for

example we actually have to build them

three times first we build them from

steel

to form reinforcement and it needs to be

shaped every single piece of steel

then we build it from wood solid wood

in order to form a formwork in which we

can finally

pour the concrete which will form the

final piece

and in developing these processes

they’ve become complex

and involves supply chains that reach

around the globe

what’s clear is that despite our

advances

we still rely on very basic processes

in order to create the shapes

and the problem with this is that they

eat up tons of energy and material

and bought in wuttenberg for example by

some recent estimates

the construction industry alone

contributes over 50

of the material waste for everything

that we use

and when we think about carbon and

embedded energy

we often think about things like flying

less

or riding our bike to work or making our

cars more efficient

but what we really should think about is

the fact that buildings alone

contribute dramatically more to the

problems of sustainability

than transport or other aspects

and when we try to solve these problems

we generally try to go more high-tech

we think about how robots can make

things more efficient and processes can

become

more precise but in the end we still

rely

on brute force methods to form and shape

our materials

for example we carve things with higher

force and more precision

or we bend pull or push our materials

into shape

and this just becomes a larger and

larger problem as things get bigger

the robots have to become bigger

and in many cases you might say that we

even rely on aggressive processes

where the materials play a completely

passive role

in the final components in which they

might become

so now let’s imagine a different way of

generating shape

so we’re in a forest with trees around

us and the light coming in from above

and it’s completely silent and in this

forest there’s shaping happening all

around us

all the time and i’m not talking about

living trees

or growing things what i’m talking about

are things like pine cones or seed pods

and what these what these pine cones are

able to do is that the scales

on the side of the cone are actually

able to change their shape

in changes with relative humidity in the

air and this means that a pine cone can

can remain closed when it needs to

protect its seeds

and open up only when it’s dry enough at

the precisely the right moment

in order to release its seeds now what’s

amazing about this

is it happens in millions of pinecones

all around the world

and it does so not by a machine or a

computer

or a microcontroller or any sort of

sensor

it does so because the hydroscopic

fibers that are laid

inside of its its skin

and when these fibers get wet they

expand and when they dry

they shrink and what’s even more

astounding

is that this process happens after the

pinecone has been cut off

from the supplies of the tree so there’s

also no living energy involved

and what this means is that even a pine

cone that’s 12 million

years old and fossilized when we take it

out

and put it in water or dry it out it

still retains the ability to change

shape now i absolutely love

robots and i love computers

but i have to say that when i see how

simply the pinecone works

and how well it works in order to

generate shape i have to say

that even after 12 years i would still

rely on the pine cone over a robot

now our goal here is to see how

if the pine cone can generate shapes so

smoothly and so fluidly

we can actually use a similar approach

to shape the way we build our buildings

and to do that we use a really high-tech

material any ideas

we use wood so wood is one of the most

abundant natural resources

on our planet and the best part of all

is that it regenerates

it comes back if we plant more trees and

we’re planting more and more trees

now what is involved in the construction

industry for hundreds of years

but what you might not know about wood

is that just like the pine cone

it has this strange ability to change

shape when it gets wet

and when it dries and this is something

that has caused problems

for many many years and scientists have

struggled to figure out ways in order to

keep our walls

not from moving but

at the same time if you really look at

the wood the forces inside of it are so

strong that it can rip itself apart the

forces are so powerful

that ancient greeks use them to split

granite blocks from their quarries

so what we want to do is see how we can

harness this force in wood

to generate design shapes that we want

for our buildings and in my group at the

university of stuttgart

we call this concept material

programming because

similar to how we can program movement

in robots digitally

we think we can also physically arrange

materials in a way in which they

generate shape

themselves

so to do so in our first studies we

looked at how we could take apart a tree

trunk

in the fewest amount of steps possible

and rearrange it into a really nice

shape

without using any mold to do this

it’s pretty simple we basically build a

giant puzzle

so we take apart the wood we put it into

small triangles and then we

rearrange it but each triangle has a

specific direction and this determines

how it will change shape

here we use beechwood a wood that my

grandfather likely would have split

up and used as firewood precisely

because it’s going to change into

strange shapes so it’s not so good for

anything else

but here once we have this flat sheet

all we have to do is add water

and slowly the shape emerges

and in the same way again by removing

the water

we can reverse the effect

now this might seem like a small art

project or something for a bit of fun we

can make a piece of wood change shape

because these pieces are pretty small

and we could imagine shaping them with

our hands or with a few tools

but when we imagine shaping something

the size of a wall

or a column then it becomes hard to

imagine how we might do it or even a

robot might do this

effectively and that’s where we start to

look at how we can upscale this process

to do so we have to do two things first

we have to be able to precisely predict

the change in shape

and this is where our computational

design tools come in

because with these tools we can do this

much more accurately than we’ve ever

been

able to do before the second thing is

that we needed to stop

changing shape when we want to use it in

our building and that will come to later

so the production of these types of

pieces begins like any normal sawmill we

have to first cut the logs

into boards and here we use freshly cut

spruce wood which starts with a

relatively high moisture content

just when it comes from the tree then we

combine these boards into two ply layups

which we call bi layers

these are five meter long really serious

pieces of wood

and when we put these bilayers into a

kiln we can dry them out

and inside the shape emerges completely

autonomously

smoothly and coordinated all at the same

time

in a giant piece of wood after which we

can take these bilayers that are then

curved

all to the same curvature and we can

combine them to form bigger components

for our building

and by layering two of them together and

connecting them

we therefore stop the change in shape

meaning that we have a form stable

component then all we have to do

is slightly trim the edges to add some

detailing so that we can connect them

later

we use these thin high curvature pieces

in order

to build a tower structure the tower

cantilevers 14 meters into the sky

yet it’s built from just 90 millimeter

thick clt

on the interior the curvature gives the

wood an entirely new

architectural and spatial expression

it’s not something that we’ve seen

before

the curvature is soft almost like a

pillow

and it’s friendly to touch

and the best part of this is that we’re

able to do this in a way that is

elegantly designed

ecological and efficient

it just makes sense

now on the other side of the scale we

can think about smaller pieces and we

can think about how our buildings

operate every day we open and close our

windows

or we have an automated shading system

and for many years our group in the

university of stuttgart has been

studying how we could actually use the

change in shape in wood

in smaller veneer pieces to build

systems that operate in relation to the

outside environment

to do so we use very thin pieces of wood

that respond

cyclically this means we can create

systems

that open for example when it’s sunny

and then automatically

close up when the rain is approaching

but there are some limitations with

using wood in this way

it can only bend a certain way because

it has this beautiful

natural structure so in our more recent

work

we look at how we can break down certain

parts of the wood

and turn these into materials that we

can then use 3d printing to arrange in

very specific patterns

this means we can give wood a new

function we can allow it to bend

it can be flexible and it can be porous

and through doing so we can create an

entirely new generation

of shape-changing mechanisms mechanisms

that are soft

but still use the power of wood

and like the pinecone these things can

operate

over and over again reliably

they just happen to work there’s no

trick there’s no

machine and there’s no computer

so in the future i think we will build

buildings not with machines but by

cleverly understanding the way in which

materials work

the very materials that they’re made of

and it’s my hope

that by doing so we can build more

ecologically

smarter higher faster and best of all

silently thank you

【音乐】

今天我们要讲的

是形状,形状无处不

,你可能没有

意识到我们每天使用的东西

实际上是形状的东西,

比如你的椅子的座位

是通过拉和推产生的

用巨大的液压机在材料上

精确贴合你的身体轮廓

,当谈到塑造一些

我们需要塑造的最大的东西时,我们需要

为我们的建筑

塑造建筑形状给我们形式和结构

,它创造了东西 我们

每天都住

在这里,所以让我们先来谈谈斯图加特的一座建筑,

这是一座非常有争议的

建筑,

但我喜欢它,我喜欢它的建筑

特色,光线可以从上面进入的方式

,最重要的是,我真的很喜欢它的

几何形状

流畅而优雅,但我不

喜欢这座建筑的建造

方式,因为

我们和建筑师一样开发了数字

流程来优化我们在

屏幕上

和机器人上的模型 以我们实际操作的方式

生产构成我们建筑物的每一部分的部件,

我仍然会

倒退,所以对于这些柱子,

例如,我们实际上必须先建造

三遍,我们先用钢建造它们

以形成钢筋,然后 需要对

每一块钢材进行成型,

然后我们用实木实木建造它

,以形成一个模板,我们最终可以在其中

浇注混凝土,这将形成

最后一块

,在开发这些过程中,

它们变得复杂

并涉及供应

遍布

全球的连锁店很明显,尽管我们取得了进步,但

我们仍然依靠非常基本的

流程来创造形状,

而这样做的问题是它们

消耗了大量的能源和材料,

并在 wuttenberg 购买,例如

最近一些 据

估计,仅建筑行业就

为我们使用

的所有物品贡献了 50 多种材料废物

,当我们考虑碳和

嵌入式能源时,

我们会 经常考虑诸如减少飞行

或骑自行车上班或提高

汽车效率等

事情,但我们真正应该考虑的

是,与交通或其他方面相比,建筑物本身

可持续性问题的贡献要

大得多

,当我们尝试 解决这些问题

我们通常会尝试更多的高科技

我们会考虑机器人如何让

事情变得更高效,过程可以

变得

更精确,但最终我们仍然

依靠蛮力方法来形成和塑造

我们的材料

,例如我们雕刻东西 用更大的

力和更高的精度,

或者我们弯曲拉动或推动我们的材料

成形

,这只会成为一个越来越

大的问题,随着事情变得越来越

大,机器人必须变得越来越大

,在许多情况下,你可能会说我们

甚至依赖于激进的过程

,其中 这些材料在最终的组件中扮演着完全

被动的角色

现在让我们想象一种不同的

生成方式 g形状,

所以我们在一个森林里,周围有树

,光线从上面射进来

,它完全安静,在这个

森林里

,我们

周围一直在发生形状,我不是在谈论

活的树

或生长的东西是什么 我说的

是松果或种子荚之类的

东西,这些松果

能够做的是,

松果侧面的鳞片实际上

能够

随着空气中的相对湿度而改变它们的形状,

并且 这意味着松果

可以在需要

保护

种子时保持关闭状态,只有在适当的时间干燥到足以释放种子时才能打开,这

令人惊奇的

是,它发生在数百万个松果

中 在世界各地

,它不是通过机器、

计算机

、微控制器或任何类型

的传感器这样做的

膨胀,当它们干燥时,

它们会收缩,更

令人震惊的

是,这个过程发生在

松果

从树的供应中被切断之后,因此

也不涉及生命能量

,这意味着即使

是 1200 万个松果

当我们将

它取出并将其放入水中或将其干燥时,它

仍然保留了改变形状的能力

现在我非常喜欢

机器人,我喜欢计算机,

但我不得不说,当我看到

松果的工作原理

和 它在

生成形状方面的效果如何 我不得不

说即使在 12 年后我仍然会

依赖松果而不是机器人

现在我们的目标是

看看松果是否可以

如此平滑流畅地生成形状

实际上可以使用类似的方法

来塑造我们建造建筑物的方式

并做到这一点我们使用真正的高科技

材料

我们使用木材的任何想法因此木材是我们星球上最

丰富

的自然资源之一 部分原因

是它会再生

,如果我们种植更多的树,它就会回来,而且

我们现在种植的树越来越多,

这在建筑

行业已有数百年历史了,

但你可能不知道的

木材就像 松果

它有一种奇怪的能力,

可以在潮湿

和干燥时改变形状,

这已经引起

了很多年的问题,科学家们一直在

努力寻找方法来

防止我们的

墙壁移动,而是

在 同时,如果你真的看

一下木头,它里面的力量是如此

强大,以至于它可以把自己撕裂。

力量如此强大

,以至于古希腊人用它们

从他们的采石场中劈开花岗岩块,

所以我们想做的是看看我们如何 可以

利用木材中的这种力量

来生成我们想要

的建筑设计形状,在我在斯图加特大学的小组中,

我们将这种概念称为材料

编程,因为

类似于我们如何编程运动人 t

在数字化机器人中,

我们认为我们也可以以物理方式排列

材料,使它们自己

产生形状

,因此在我们的第一项研究中,

我们研究了如何以

尽可能少的步骤拆开树干

并重新排列 在

不使用任何模具的情况

下变成一个非常好的形状非常简单我们基本上构建了一个

巨大的拼图

所以我们把木头拆开我们把它分成

小三角形然后我们

重新排列它但是每个三角形都有一个

特定的方向这决定

了它如何 在这里会改变形状

我们使用山毛榉木 一种我

祖父可能会

劈开并用作柴火的木材,

因为它会变成

奇怪的形状,所以它对其他任何东西都不是很好,

但是一旦我们有了这个平板,

我们就可以 要做的是加水

,慢慢地出现形状,

然后以同样的方式再次

去除水,

我们可以扭转效果,

现在这看起来像是一个小型艺术

项目或其他东西 或者有点乐趣,我们

可以让一块木头改变形状,

因为这些块非常小

,我们可以想象用手或一些工具塑造它们,

但是当我们想象塑造

像墙

或柱子大小的东西时 变得很难

想象我们如何做到这一点,甚至

机器人可能会有效地做到这一点

,这就是我们开始

研究如何升级这个过程的地方

,所以我们必须首先做两件事,

我们必须能够准确预测

这就是我们的计算

设计工具的用武之地,

因为有了这些工具,我们可以

比以往任何时候都更准确

地做到这一点,第二件事是

我们需要在想要使用时停止改变形状 它在

我们的建筑物中,稍后会出现,

所以这些类型的部件的生产

就像任何普通的锯木厂一样开始,我们

必须首先将原木

切割成板,在这里我们使用刚切割的

云杉木,开始时具有

相对较高的 mo

当它来自树的时候,我们

将这些木板组合成两层铺层

,我们称之为双层,

这些是五米长的非常严肃

的木块

,当我们将这些双层放入

窑中时,我们可以将它们烘干

并在里面 形状完全

自主

平滑地出现

在一块巨大的木头上,同时协调一致,之后我们

可以将这些双层

弯曲成相同的曲率,我们可以

将它们组合成更大的组件,

用于我们的建筑,

并通过将两个分层 将它们组合在一起并将

它们连接起来

,因此我们停止了形状的变化,

这意味着我们有一个形状稳定的

组件,然后我们所要做的

就是稍微修剪边缘以添加一些

细节,以便我们稍后可以将它们连接起来,

我们使用这些薄的高曲率部件

为了建造塔式结构,塔

悬臂伸向天空 14 米,

但它是由内部仅 90 毫米

厚的 clt 建造

的,曲率给出了

木材是一种全新的

建筑和空间表达

它不是我们以前见过的东西

弯曲几乎像枕头一样柔软

,触摸起来很友好

,最好的部分是我们

能够以一种方式做到这一点

优雅的设计

生态和高效

现在在规模的另一边是

有意义的 多年来,我们在

斯图加特大学的研究小组一直在

研究如何真正利用

较小的单板件中木材的形状变化来构建

与外部环境相关的系统,

因此我们使用非常薄的木块

来响应

周期性地,这意味着我们可以创建

系统

,例如在阳光明媚时打开

,然后

在下雨时自动关闭,

但有一些限制

以这种方式使用木材,

它只能以某种方式弯曲,因为

它具有这种美丽的

自然结构,所以在我们最近的

工作中,

我们研究了如何分解

木材的某些部分

并将它们转化为我们

可以使用 3D 打印的材料 以

非常具体的图案排列

这意味着我们可以赋予木材新的

功能 我们可以允许它弯曲

它可以是灵活的并且可以是多孔的

,通过这样做我们可以创造出

新一代

的柔软的变形机制

但仍然使用木头的力量

,就像松果一样,这些东西

可以可靠地反复运行

它们只是碰巧工作没有

技巧没有

机器也没有计算机

所以在未来我认为我们

不会用机器而是用机器建造建筑物

巧妙地理解材料的工作方式以及

它们所用的材料

,我

希望通过这样做,我们可以更快地建造更

生态

更智能的建筑 st

默默地谢谢你