Fashion has a pollution problem can biology fix it Natsai Audrey Chieza

You’re watching the life cycle
of a Streptomyces coelicolor.

It’s a strain of bacteria
that’s found in the soil

where it lives in a community
with other organisms,

decomposing organic matter.

Coelicolor is a beautiful organism.

A powerhouse for synthesizing
organic chemical compounds.

It produces an antibiotic
called actinorhodin,

which ranges in color
from blue to pink and purple,

depending on the acidity
of its environment.

That it produces these pigment molecules
sparked my curiosity

and led me to collaborate
closely with coelicolor.

It is an unlikely partnership,

but it’s one that completely transformed
my practice as a materials designer.

From it, I understood how nature
was going to completely revolutionize

how we design and build our environments,

and that organisms like coelicolor

were going to help us
grow our material future.

So what’s wrong with things as they are?

Well, for the last century,

we’ve organized ourselves
around fossil fuels,

arguably, the most valuable
material system we have ever known.

We are tethered to this resource,
and we’ve crafted a dependency on it

that defines our identities, cultures,
our ways of making and our economies.

But our fossil fuel-based activities
are reshaping the earth

with a kind of violence that is capable
of dramatically changing the climate,

of accelerating a loss of biodiversity

and even sustaining human conflict.

We’re living in a world

where the denial of this dependence
has become deadly.

And its reasons are multiple,

but they include the privilege
of not being affected

and what I believe
is a profound lack of imagination

about how else we could live

within the limits
of this planet’s boundaries.

Fossil fuels will one day
give way to renewable energy.

That means we need to find
new material systems

that are not petroleum-based.

I believe that those material systems
will be biological,

but what matters
is how we design and build them.

They mustn’t perpetuate
the destructive legacies of the oil age.

When you look at this image,

what do you see?

Well, I see a highly sophisticated
biological system,

that through the use of enzymes,

can move and place atoms
more quickly and precisely

than anything we’ve ever engineered.

And we know that it can do this at scale.

Nature has evolved over 3.8 billion years

to be able to do this,

but now through the use
of synthetic biology,

an emerging scientific discipline

that seeks to customize
this functionality of living systems,

we can now rapid prototype
the assembly of DNA.

That means that we can engineer
the kind of biological precision

that makes it possible
to design a bacteria

that can recycle metal,

to grow fungi into furniture

and even sequester
renewable energy from algae.

To think about how we might access
this inherent brilliance of nature –

to build things from living things –

let’s consider the biological
process of fermentation.

I’ve come to think of fermentation,
when harnessed by humans,

as an advanced technological
toolkit for our survival.

When a solid or a liquid ferments,

it’s chemically broken down
by bacterial fungi.

The byproduct of this is what we value.

So for example, we add yeast
to grapes to make wine.

Well in nature, these transformations
are part of a complex network –

a continuous cycle
that redistributes energy.

Fermentation gives rise
to multispecies interactions

of bacteria and fungi,

plants, insects, animals and humans:

in other words, whole ecosystems.

We’ve known about these powerful
microbial interactions

for thousands of years.

You can see how through
the fermentation of grains,

vegetal matter and animal products,

all peoples and cultures of the world
have domesticated microorganisms

to make the inedible edible.

And there’s even evidence
that as early as 350 AD,

people deliberately fermented
foodstuffs that contained antibiotics.

The skeletal remains
of some Sudanese Nubian

were found to contain
significant deposits of tetracycline.

That’s an antibiotic that we use
in modern medicine today.

And nearly 1500 years later,

Alexander Fleming discovered
the antimicrobial properties of mold.

And it was only through the industrialized
fermentation of penicillin

that millions could survive
infectious diseases.

Fermentation could once again
play an important role

in our human development.

Could it represent a new mode of survival

if we harness it to completely
change our industries?

I’ve worked in my creative career
to develop new material systems

for the textile industry.

And while it is work that I love,

I cannot reconcile with the fact
that the textile industry

is one of the most polluting in the world.

Most of the ecological harm
caused by textile processing

occurs at the finishing
and the dyeing stage.

Processing textiles
requires huge amounts of water.

And since the oil age completely
transformed the textile industry,

many of the materials

and the chemicals used
to process them are petroleum based.

And so coupled with our insatiable
appetite for fast fashion,

a huge amount of textile waste
is ending up in landfill every year

because it remains
notoriously difficult to recycle.

So again, contrast this with biology.

Evolved over 3.8 billion years,

to rapid prototype,

to recycle and to replenish

better than any system
we’ve ever engineered.

I was inspired by this immense potential

and wanted to explore it
through a seemingly simple question –

at the time.

If a bacteria produces a pigment,

how do we work with it to dye textiles?

Well, one of my favorite ways

is to grow Streptomyces coelicolor
directly onto silk.

You can see how each colony
produces pigment around its own territory.

Now, if you add many, many cells,

they generate enough dyestuff
to saturate the entire cloth.

Now, the magical thing
about dyeing textiles in this way –

this sort of direct fermentation

when you add the bacteria
directly onto the silk –

is that to dye one t-shirt,

the bacteria survive
on just 200 milliliters of water.

And you can see how this process
generates very little runoff

and produces a colorfast pigment
without the use of any chemicals.

So now you’re thinking –

and you’re thinking right –

an inherent problem associated
with designing with a living system is:

How do you guide a medium
that has a life force of its own?

Well, once you’ve established
the baseline for cultivating Streptomyces

so that it consistently
produces enough pigment,

you can turn to twisting, folding,

clamping, dipping, spraying,

submerging –

all of these begin to inform
the aesthetics of coelicolor’s activity.

And using them in a systematic way

enables us to be able
to generate an organic pattern …

a uniform dye …

and even a graphic print.

Another problem is how to scale
these artisanal methods of making

so that we can start
to use them in industry.

When we talk about scale,

we consider two things in parallel:

scaling the biology,

and then scaling
the tools and the processes

required to work with the biology.

If we can do this,

then we can move
what happens on a petri dish

so that it can meet the human scale,

and then hopefully
the architecture of our environments.

If Fleming were alive today,

this would definitely
be a part of his toolkit.

You’re looking at our current best guess

of how to scale biology.

It’s a bioreactor;

a kind of microorganism brewery
that contains yeasts

that have been engineered to produce
specific commodity chemicals and compounds

like fragrances and flavors.

It’s actually connected to a suite
of automated hardware and software

that read in real time

and feed back to a design team
the growth conditions of the microbe.

So we can use this system
to model the growth characteristics

of an organism like coelicolor

to see how it would
ferment at 50,000 liters.

I’m currently based at Ginkgo Bioworks,

which is a biotechnology
startup in Boston.

I am working to see
how their platform for scaling biology

interfaces with my artisanal methods
of designing with bacteria for textiles.

We’re doing things like engineering
Streptomyces coelicolor

to see if it can produce more pigment.

And we’re even looking at the tools
for synthetic biology.

Tools that have been designed
specifically to automate synthetic biology

to see how they could adapt
to become tools to print and dye textiles.

I’m also leveraging digital fabrication,

because the tools that I need
to work with Streptomyces coelicolor

don’t actually exist.

So in this case –

in the last week actually,

I’ve just designed a petri dish

that is engineered to produce
a bespoke print on a whole garment.

We’re making lots of kimonos.

Here’s the exciting thing:

I’m not alone.

There are others who are building
capacity in this field,

like MycoWorks.

MycoWorks is a startup

that wants to replace animal leather
with mushroom leather,

a versatile, high-performance material

that has applications beyond textiles
and into product and architecture.

And Bolt Threads –

they’ve engineered a yeast
to produce spider-silk protein

that can be spun
into a highly programmable yarn.

So think water resistance,

stretchability and superstrength.

To reach economies of scale,

these kinds of startups
are having to build and design

and engineer the infrastructure
to work with biology.

For example,

Bolt Threads have had to engage
in some extreme biomimicry.

To be able to spin the product
this yeast creates into a yarn,

they’ve engineered a yarn-making machine

that mimics the physiological conditions

under which spiders
ordinarily spin their own silk.

So you can start to see how imaginative

and inspiring modes of making
exist in nature

that we can use to build capacity
around new bio-based industries.

What we now have is the technology

to design, build, test and scale
these capabilities.

At this present moment,

as we face the ecological
crisis in front of us,

what we have to do is to determine

how we’re going to build
these new material systems

so that they don’t mirror
the damaging legacies of the oil age.

How we’re going to distribute them
to ensure a sustainable development

that is fair and equitable
across the world.

And crucially, how we would like
the regulatory and ethical frameworks

that govern these technologies

to interact with our society.

Biotechnology is going to touch
every part of our lived experience.

It is living;

it is digital;

it is designed, and it can be crafted.

This is a material future
that we must be bold enough to shape.

Thank you.

(Applause)

您正在观察
天蓝色链霉菌的生命周期。

它是一种
在土壤

中发现的细菌菌株,它
与其他生物一起生活在土壤中,

分解有机物。

Coelicolor是一个美丽的有机体。

合成有机化合物的动力源

它产生一种
称为放线菌素的抗生素,

其颜色范围
从蓝色到粉红色和紫色,

具体
取决于其环境的酸度。

它产生这些色素分子
激发了我的好奇心,

并促使我
与 coelicolor 密切合作。

这是一种不太可能的合作关系,

但它彻底改变了
我作为材料设计师的实践。

从中,我了解到
大自然将如何彻底

改变我们设计和建造环境的方式,

并且像天蓝色这样的生物

将帮助我们
发展我们的物质未来。

那么事情的现状有什么问题呢?

好吧,在上个世纪,

我们围绕化石燃料组织了自己

可以说,这是我们所知道的最有价值的
材料系统。

我们被束缚在这种资源上
,我们已经对它产生了依赖,

它定义了我们的身份、文化、
我们的制造方式和我们的经济。

但是,我们以化石燃料为基础的活动
正在

以一种暴力重塑地球,这种暴力
能够极大地改变气候

,加速生物多样性的丧失

,甚至维持人类冲突。

我们生活在

一个否认这种依赖
已经变得致命的世界。

其原因是多方面的,

但其中包括
不受影响的特权,

以及我认为

我们对如何


这个星球的边界范围内生活的其他方面缺乏想象力。

化石燃料总有一天
会被可再生能源取代。

这意味着我们需要找到

不以石油为基础的新材料系统。

我相信这些材料系统
将是生物的,

但重要的
是我们如何设计和建造它们。

他们不能延续
石油时代的破坏性遗产。

当你看到这张图片时,

你看到了什么?

嗯,我看到了一个高度复杂的
生物系统

,通过使用酶,它

可以

比我们曾经设计过的任何东西更快、更精确地移动和放置原子。

我们知道它可以大规模地做到这一点。

大自然已经进化了 38 亿年

才能够做到这一点,

但现在通过
使用合成生物学

这一新兴的科学学科

,旨在定制
生命系统的这种功能,

我们现在可以快速构建
DNA 组装的原型。

这意味着我们可以设计
出一种生物精确度

,从而
可以设计出一种

可以回收金属的细菌

,将真菌培育成家具

,甚至
从藻类中隔离可再生能源。

想一想我们如何才能获得
这种与生俱来的自然光彩——

从生物中建造东西——

让我们考虑发酵的生物
过程。

我开始想到发酵
,当被人类利用时,

它是我们生存的先进技术
工具包。

当固体或液体发酵时,

它会
被细菌真菌化学分解。

这就是我们所重视的副产品。

例如,我们
在葡萄中添加酵母来酿造葡萄酒。

在本质上,这些转换
是复杂网络的一部分——一个

重新分配能量的连续循环。

发酵导致

细菌和真菌、

植物、昆虫、动物和人类的多物种相互作用

:换句话说,就是整个生态系统。 数千年来,

我们已经知道这些强大的
微生物相互作用

你可以看到,通过
谷物、

植物物质和动物产品的发酵,

世界上所有的民族和文化
都驯化了微生物

,使不可食用的食物变得可食用。

甚至有证据
表明,早在公元 350 年,

人们就故意发酵
含有抗生素的食品。

一些苏丹努比亚人的骨骼残骸

被发现含有
大量四环素沉积物。

这是我们
今天在现代医学中使用的一种抗生素。

近 1500 年后,

亚历山大·弗莱明发现
了霉菌的抗菌特性。

只有通过青霉素的工业化
发酵

,数百万人才能在
传染病中幸存下来。

发酵可以再次

在我们的人类发展中发挥重要作用。

如果我们利用它来彻底
改变我们的行业,它会代表一种新的生存模式吗?

在我的创作生涯中,我一直致力于为纺织行业
开发新的材料系统

虽然这是我热爱的工作,但

我无法
接受纺织业

是世界上污染最严重的行业之一这一事实。

纺织品加工造成的大部分生态危害

发生在后整理
和染色阶段。

加工纺织品
需要大量的水。

由于石油时代彻底
改变了纺织工业,

许多用于加工它们的材料

和化学品
都是以石油为基础的。

再加上我们
对快时尚的贪得无厌的胃口,每年

都有大量的纺织
废料最终进入垃圾填埋场,

因为它仍然
很难回收。

因此,再次将其与生物学进行对比。

经过 38 亿年的进化

,快速原型

、回收和补充


我们设计的任何系统都好。

我受到这种巨大潜力的启发,

并想
通过一个看似简单的问题来探索它——

当时。

如果细菌产生色素,

我们如何使用它来染色纺织品?

好吧,我最喜欢的方法之一

是将天蓝色链霉菌
直接种植在丝绸上。

您可以看到每个菌落如何
在自己的领土周围产生色素。

现在,如果你添加很多很多的细胞,

它们会产生足够的染料
来浸透整块布。

现在,
以这种方式染色纺织品的神奇之处——

当你将细菌
直接添加到丝绸上时,这种直接发酵

——染色一件T恤

,细菌
只需要200毫升的水就能存活。

您可以看到这个过程如何
产生非常少的径流

并在
不使用任何化学物质的情况下产生不褪色的颜料。

所以现在你在想——

而且你的想法是对的——

一个
与生命系统设计相关的固有问题是:

你如何引导
一种拥有自己生命力的媒介?

好吧,一旦你建立
了培养链霉菌的基线

,使其能够持续
产生足够的色素,

你就可以转向扭曲、折叠、

夹紧、浸渍、喷洒、

浸没——

所有这些都开始
影响天蓝色的活动美学。

并且以系统的方式使用它们

使我们
能够生成有机图案

……均匀的染料……

甚至是图形打印。

另一个问题是如何扩展
这些手工制作方法,

以便我们可以开始
在工业中使用它们。

当我们谈论规模时,

我们会同时考虑两件事:

扩展生物学,

然后扩展使用生物学所需
的工具和过程

如果我们能做到这一点,

那么我们就可以移动
培养皿上发生的事情

,使其能够满足人类的规模,然后希望能够适应

我们环境的架构。

如果弗莱明今天还活着,

这肯定
会成为他工具包的一部分。

您正在查看我们目前

对如何扩展生物学的最佳猜测。

这是一个生物反应器;

一种含有酵母的微生物啤酒厂
,这些酵母

被设计用于生产
特定的商品化学品和化合物,

如香料和香精。

它实际上连接到
一套自动化硬件和软件,这些硬件和软件

实时读取

并将微生物的生长条件反馈给设计团队。

所以我们可以使用这个系统
来模拟

像天蓝色这样的生物体的生长特征,

看看它
在 50,000 升时是如何发酵的。

我目前在波士顿

的一家生物技术
初创公司 Ginkgo Bioworks 工作。

我正在努力
了解他们用于扩展生物学的平台如何

与我
用细菌设计纺织品的手工方法相结合。

我们正在做一些事情,比如设计
天蓝色链霉菌

,看看它是否能产生更多的色素。

我们甚至正在
研究合成生物学的工具。

专门设计
用于自动化合成生物学的工具,

以了解它们如何
适应成为印刷和染色纺织品的工具。

我也在利用数字制造,

因为我
需要使用天蓝色链霉菌的工具

实际上并不存在。

所以在这种情况下——

实际上在上周,

我刚刚设计了一个培养皿

,可以
在整件衣服上产生定制的印花。

我们正在做很多和服。

令人兴奋的是:

我并不孤单。

还有其他人
正在该领域进行能力建设,

例如 MycoWorks。

MycoWorks 是一家

希望用蘑菇皮革代替动物皮革
的初创公司,蘑菇皮革是

一种用途广泛的高性能材料

,其应用范围不仅限于纺织品,还
应用于产品和建筑。

还有 Bolt Threads——

他们设计了一种酵母
来生产蜘蛛丝蛋白

,这种蛋白可以纺
成高度可编程的纱线。

因此,请考虑防水性、

拉伸性和超强度。

为了实现规模经济,

这类初创公司
必须建造、设计

和设计基础设施
来与生物学合作。

例如,

Bolt Threads 不得不
进行一些极端的仿生学。

为了能够将
这种酵母产生的产品纺成纱线,

他们设计了一种纱线制造机器

,该机器模仿了

蜘蛛
通常纺丝自己的丝绸的生理条件。

因此,您可以开始看到自然界中存在的富有想象力

和启发性的制造模式是如何
存在的

,我们可以利用这些模式
围绕新的生物基产业建设能力。

我们现在拥有的是

设计、构建、测试和扩展
这些功能的技术。

目前,

当我们面临
摆在我们面前的生态危机时,

我们必须做的是确定

我们将如何构建
这些新材料系统,

以免它们
反映石油时代的破坏性遗产。

我们将如何分配它们
以确保

在世界范围内实现公平公正的可持续发展。

至关重要的是,我们希望管理这些技术
的监管和道德框架

如何与我们的社会互动。

生物技术将触及
我们生活经验的每一个部分。

它是活的;

它是数字的;

它是设计的,它是可以制作的。

这是一个物质的未来
,我们必须有足够的勇气去塑造。

谢谢你。

(掌声)